News Column

Patent Issued for Shared Storage Access Load Balancing for a Large Number of Hosts

September 9, 2014



By a News Reporter-Staff News Editor at Information Technology Newsweekly -- EMC Corporation (Hopkinton, MA) has been issued patent number 8819344, according to news reporting originating out of Alexandria, Virginia, by VerticalNews editors.

The patent's inventors are Faibish, Sorin (Newton, MA); Brashers, Per (Oakland, CA); Pedone, James (West Boylston, MA); Glasgow, Jason (Newton, MA); Jiang, Xiaoye (Shrewsbury, MA).

This patent was filed on August 9, 2007 and was published online on August 26, 2014.

From the background information supplied by the inventors, news correspondents obtained the following quote: "Data storage is most economically provided by a storage system including a redundant array of inexpensive disks (RAID). For servicing a large number of network clients, a server is interposed between the network clients and the storage system for authenticating the client requests and for mapping the client requests to storage addresses in the storage system. For servicing a large number of hosts in a computational grid environment, a data switch is interposed between the hosts and the storage system.

"When a storage system provides storage for a large number of network clients or a large number of hosts, there has often been a problem that storage access performance has been limited by the data paths between the server or switch and the storage system due to imbalance or overload upon these data paths. This problem has been addressed by various manual and automatic methods of system configuration and load balancing.

"Traditionally, a system administrator has planned I/O bandwidth allocation to the client or host applications so that the I/O load is spread over as many paths as are available in the configuration. At the same time, the system administrator has considered the individual storage requirements for each client or host application. Often a significant load imbalance would occur in this environment, causing erratic application performance. Then the system administrator would re-allocate the client or host applications to different paths in order to re-balance the I/O load.

"More recently, file servers have been provided with an automatic and dynamic load balancing facility for distributing client I/O requests across all available paths from the server to the storage devices that may service the I/O requests. For example, EMC Corporation has sold the PowerPath.RTM. load balancing facility in the form of a software layer between the file system and the SCSI device driver in the file server. The PowerPath.RTM. load balancing facility directs each I/O request to a selected port of the storage system based on one of four pre-selected load balancing policies. The system administrator can chose an adaptive policy (the default polity), a round-robin policy, a least I/Os policy, or a least-blocks policy. The adaptive policy is to select the path on the basis of path load (queue with the shortest depth in time) and device priority. The round-robin policy selects the next available path in rotation. The least I/Os policy selects the path with the fewest pending I/O requests. The least blocks policy selects the path with the fewest pending blocks of I/O data.

"Although the PowerPath.RTM. load balancing facility has been very successful for balancing the load of a single file server upon a data storage system, problems often arise when a data storage system receives I/O requests from more than one file server or host. Without coordination between all of the file servers or hosts feeding I/O requests to the data storage system, load balancing locally at each file server or host based on the local activity at the file server or host may not achieve load balancing globally across all of the ports or storage devices of the data storage system. A loss of host performance is often noticed when file servers or hosts are added to the data processing system. The host performance may be decreased further by an increase in the number of pipes accessing the storage if there is limited network throughput, for example, in a system using 1 gigabit Ethernet pipes.

"Loss of performance due to load balancing locally at each file server or host based on activity at the file server or host may become very significant when file servers or hosts share access to the same RAID group, file system, or file. In this case, there may be no increase in activity at any one file server or host if there is an imbalance in loading on certain ports of the storage system due to concurrent access to the shared RAID group, file system, or file. This problem may often arise in a computational grid environment for scientific or engineering applications that use a large number of hosts for parallel processing and use the storage system for passing intermediate results between the hosts. The problem is the same for various storage access protocols such as SCSI, SCSI over IP (iSCSI), InfiniBand, and Fibre Chanel (FC). The problem is aggravated when the hosts use virtual machines such as VMware (Trademark) virtual machines, in which case the unbalance is ported inside the host between multiple virtual machines."

Supplementing the background information on this patent, VerticalNews reporters also obtained the inventors' summary information for this patent: "In accordance with one aspect, the invention provides a data processing system. The data processing system includes host data processors, a data storage system including data storage shared among the host data processors, and a data switch coupling the host data processors to the data storage system for transmitting block I/O requests from the host data processors to the data storage system for access to respective blocks of the shared data storage. The data storage system has host adapter ports coupled to the data switch. The shared data storage is accessible from operable host adapter ports, and the data switch is programmed for distributing the block I/O requests over the operable host adapter ports for load balancing of the block I/O requests among the operable host adapter ports.

"In accordance with another aspect, the invention provides a data processing system. The data processing system includes host data processors, and data storage systems. Each of the data storage systems includes data storage shared among the host data processors. The data processing system also includes a respective data switch coupled to each of the data storage systems for distributing block I/O requests from the host data processors to the data storage system for access to respective blocks of the shared data storage. The data processing system further includes a respective data switch coupled to each of the host data processors and coupled to the respective data switches coupled to the data storage systems for distributing block I/O requests from the host data processor to the respective data switches coupled to the data storage systems. The shared data storage included in each of the data storage systems is accessible from operable host adapter ports of the data storage system. The respective data switch coupled to each of the data storage systems is programmed for distributing the block I/O requests from the respective data switch coupled to the data storage system over the operable host adapter ports for load balancing of the block I/O requests from the respective data switch coupled to the data storage system among the operable host adapter ports. Moreover, each of the data storage systems has disk director ports coupled to the host adapter ports for transmission of the block I/O requests received at the host adapter ports from the host adapter ports to the disk director ports, and strings of disk drives coupled to respective ones of the disk director ports for transmission of the block I/O requests from the disk director ports to the strings of the disk drives. The shared storage of each of the data storage systems includes at least one file system striped across the strings of the disk drives so that block I/O requests for sequential access of the file system are distributed across the disk director ports for load balancing of the block I/O requests for sequential access of the file system among the disk director ports.

"In accordance with yet another aspect, the invention provides a method of shared storage access load balancing in a data processing system including host processors sharing access to data storage of a data storage system. The data storage system includes host adapter ports, disk director ports, and RAID sets of disk storage devices coupled to the disk director ports. The data storage system has been configured for access of each of the disk storage devices from each of the host adapter ports. The method includes striping a file system across the RAID sets of the disk storage devices so that the file system is accessible from all of the disk director ports of the storage system, and operating at least one data switch coupled between the host data processors and the data storage system to distribute block I/O requests from the host data processors across the host adapter ports that are operable for load balancing of the block I/O requests among the operable host adapter ports."

For the URL and additional information on this patent, see: Faibish, Sorin; Brashers, Per; Pedone, James; Glasgow, Jason; Jiang, Xiaoye. Shared Storage Access Load Balancing for a Large Number of Hosts. U.S. Patent Number 8819344, filed August 9, 2007, and published online on August 26, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8819344.PN.&OS=PN/8819344RS=PN/8819344

Keywords for this news article include: EMC Corporation, Information Technology, Information and Data Processing, Information and Data Storage.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Information Technology Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters