News Column

Patent Application Titled "Wireless Local Messaging System and Method of Determining a Position of a Navigation Receiver within a Wireless Local...

September 11, 2014



Patent Application Titled "Wireless Local Messaging System and Method of Determining a Position of a Navigation Receiver within a Wireless Local Messaging System" Published Online

By a News Reporter-Staff News Editor at Politics & Government Week -- According to news reporting originating from Washington, D.C., by VerticalNews journalists, a patent application by the inventors Oehler, Veit (Neubiberg, DE); Steffes, Julian (Muenchen, DE); Voit Von Voithenberg, Michael (Muenchen, DE), filed on September 1, 2012, was made available online on August 28, 2014.

The assignee for this patent application is Astrium GmbH.

Reporters obtained the following quote from the background information supplied by the inventors: "Global navigation satellite systems (GNSS) provide world-wide signals that principally contain distance information, which allows any user who is receiving such GNSS signals for accurate global localization.

"Once the GNSS signal reception is disturbed e.g. through walls inside buildings or much reduced in urban canyons, the required information can no longer be provided to the user and the localization based on pure GNSS fails, or is degraded depending on the amount of information that is still received by the navigation receiver or mobile device.

"In order to enhance the accuracy of the position determination satellite based augmentation systems (SBAS) are provided that send messages to the navigation receivers on a second frequency band that is different from the first frequency band on which the GNSS signals are transmitted (L1 band). These SBAS messages comprise accuracy information about the navigation information transmitted on the L1 band from the navigation satellites. The SBAS messages are transmitted from satellites other than the GNSS satellites and from ground stations. Known SBAS systems are the North American WAAS system and the European EGNOS system.

"Today's mass-market mobile devices typically already include GNSS receivers or in general GNSS chips, and allow for global localization and navigation accordingly, but face the same signal shadowing or blocking situations once operating in relevant severe environments (e.g. indoor).

"This problem of suitable GNSS signal and related information acquisition in severe environments could be avoided by providing GNSS-like signals from locally deployed transmitters, so-called Pseudolites (pseudo-satellites), e.g. installed inside a building to allow for local indoor signal tracking. However, the use of pseudolites installed inside a building is difficult due to signal reflections occurring at the walls and ceilings of the building so that a correct navigation result cannot be achieved.

"It is thus a problem to navigate with a GNSS navigation device within buildings or within environments in which reflections of GNSS signals or Pseudolite signals occur.

"There are also many needs to contact individuals in a certain area, e.g. in order to transmit a warning message, like hurricane warning or fire alarm, or simply a general information like a commercial advertising."

In addition to obtaining background information on this patent application, VerticalNews editors also obtained the inventors' summary information for this patent application: "According to the invention, there is provided at least one navigation receiver configured to receive and process navigation messages from satellites of a global navigation satellite system on a given carrier frequency, each of the satellites transmitting the navigation messages with a satellite-individual PRN code. The at least one transmitter is configured to transmit the local message in a local message signal on the given carrier frequency with a local PRN code that is not used by a satellite of the global navigation satellite system. The at least one receiver is further configured to receive the local PRN code and to process the local message signal.

"Today, nearly everybody carries a portable communication device like a mobile phone which is equipped with a GNSS receiver. The basic idea of the present invention is thus to enable standard GNSS navigation receivers and mass-market mobile devices with navigation capability to receive local messaging information. This local messaging information is transmitted on the same frequency band that already covers standard GNSS channels and uses information dissemination concepts of the GNSS system for disseminating the messages.

"Using these already provided GNSS channels and using the dissemination concepts of GNSS messages for the transmission of the local messaging information from the local transmitters minimizes the impact on standard GNSS receivers and mobile devices. A simple firmware upgrade of these receivers and devices can thus enable the GNSS receivers and mobile devices to receive and process the local messaging information.

"Implementation of the invention onto mass-market devices respectively upgrading the relevant GNSS chip firmware, and equipping suitable environments with the new local transmitter infrastructure, enables many various location based services without the need for extensive additional investments. Furthermore critical information, e.g. security relevant local data, can be visualized on those mobile devices in real-time, further extending the area of consideration for the present invention from commercial to safety critical applications and services.

"In a first preferred embodiment of the messaging system according to the invention the local message signal is a non-continually transmitted pulsed signal. This pulsed transmission of the local position information allows the GNSS navigation receivers to receive standard GNSS navigation information from the satellites in addition to the local message signal transmitted from the local transmitters.

"It is particularly advantageous when at least one database unit is provided in which individual local messages for each one of the local transmitters are stored together with the associated identifying data of the local transmitter and when each navigation receiver is adapted to communicate with the database in order to obtain the local message associated to the local transmitter on the basis of the identifying data received by the navigation receiver from the local transmitter. This is a very easy way to disseminate information from a central control facility because the message information is stored, managed and serviced at only one place (in the central database) instead of managing and servicing a plurality of local transmitter devices.

"In another preferred embodiment of the invention the local transmitters are provided in a server-based network in which each local transmitter is connected to at least one server of the network and the network is configured such that the message content to be transmitted by a local transmitter can be uploaded from the server via the network into a memory of the local transmitter.

"Preferably, the local message comprises position information (e.g. position data) of the local transmitter. This is a very easy way to determine the position of the navigation receiver receiving this message with an acceptable degree of precision. The precision of this simple local navigation concept is enhanced when the transmission range of the local transmitter is small.

"As the position of the local transmitter in such a local navigation system is already known, the position data transmitted from the local transmitter can thus be transmitted as a simple local position information message from the local transmitter to the navigation receiver so that the navigation receiver can immediately display this local position information, for example on a display, without carrying out complicated calculations. The smaller the area is in which the signal transmitted from the local transmitter can be received, the more precise is the local position information received from this local transmitter. But also if the signals from more than one local transmitter are received by a navigation receiver it is possible to calculate in a simple manner the actual position of the navigation receiver between the positions of the local transmitters from which messages are received.

"Local position information transmitted from the local transmitters according to the present invention is, for example, coordinates of the transmitter's position or a name or a number of a building or a room inside a building or a floor of a building. Even a position of a navigation receiver inside a larger room can be detected with a system according to this embodiment of the invention.

"An alternative to directly transmitting the position data of the local transmitter is an embodiment of the present invention wherein the local position information is a message comprising identifying data of the local transmitter; wherein at least one database unit is provided in which position data for each one of the local transmitters is stored together with the associated identifying data of the local transmitter and wherein each navigation receiver is adapted to communicate with the database in order to obtain the positioning data of the local transmitter on the basis of identifying data received by the navigation receiver from the local transmitter. This embodiment allows a very effective management of the position information in a complex environment with a plurality of local transmitters even if these local transmitters cover different locations far away from each other.

"A further very advantageous development of the present invention involves the local transmitter(s) being adapted to transmit orientation information and wherein the navigation receiver(s) is/are adapted to receive and output the orientation information, preferably display the orientation information on a display. Such orientation information can be, for example, an indication to a closest emergency exit of a building, which can be transmitted to the navigation receiver(s) together with e.g. a fire alarm message from the local transmitter(s). Instead of a fire alarm message, other locally relevant information may also be transmitted as a message from the local transmitter(s) to the navigation receiver(s) within the transmission range of the respective local receiver(s). Thus, the system according to such an embodiment of the present invention also allows for dynamic local information provision.

"It is also advantageous when a wireless local messaging system with such a local navigation capability is integrated in a global navigation satellite system having at least one group of navigation satellites transmitting navigation information to a plurality of navigation receivers. Such a combined global and local navigation system provides for seamless navigation outside and inside of a building wherein the navigation outside is carried out with the GNSS and the navigation inside is carried out with the local navigation system.

"In the case that no navigation information is received from the group of navigation satellites or in case the navigation information received from the group of navigation satellites does not allow the determination of the position of the navigation receivers and in case a local position information is received by the navigation receiver from either a local transmitter or a related database the position data (e.g. the position data of the local transmitter or of a building or a room in the building or a floor in the building) are determined on the basis of the received position information and are allotted as position data to the navigation receiver.

"This new and inventive method enables GNSS receivers to receive, in addition to navigation signals from GNSS satellites, also local position data that can be directly and immediately allotted to the position of the navigation receiver without complex signal processing and complicated navigation calculations.

"Preferably the position data of the local transmitter are directly retrieved from the position information.

"Alternatively, identifying data of the local transmitter are directly retrieved from the position information and the position data of the local transmitter are retrieved on the basis of the identifying data from a database in which the position data are stored for each one of the local transmitters in relation to the identifying data.

"Exemplary embodiments of the prevent invention are also directed to a navigation receiver. The receiver is thus configured to receive a local PRN code and to process a local message signal. The implementation of the capability to receive the local PRN code and to process a local message signal, into the software running on a navigation receiver (e.g. by a firmware upgrade) is a technical solution that can be very easily and quickly realized so that no hardware adaptation is to be carried out in already existing or new navigation receivers.

BRIEF DESCRIPTION OF THE DRAWING FIGURES

"The invention is hereinafter described by example with reference to the drawings. In these drawings

"FIG. 1 shows an example of a wireless local messaging system according to the invention;

"FIG. 2 shows an example of an architecture of a local position determining system with the wireless local messaging system of the present invention in combination with a GNSS."

For more information, see this patent application: Oehler, Veit; Steffes, Julian; Voit Von Voithenberg, Michael. Wireless Local Messaging System and Method of Determining a Position of a Navigation Receiver within a Wireless Local Messaging System. Filed September 1, 2012 and posted August 28, 2014. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=5101&p=103&f=G&l=50&d=PG01&S1=20140821.PD.&OS=PD/20140821&RS=PD/20140821

Keywords for this news article include: Astrium GmbH.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Politics & Government Week


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters