News Column

Researchers Submit Patent Application, "Iontophoretic Apparatus and Method for Marking of the Skin", for Approval

September 10, 2014



By a News Reporter-Staff News Editor at Electronics Newsweekly -- From Washington, D.C., VerticalNews journalists report that a patent application by the inventor Imran, Mir (Los Altos Hills, CA), filed on March 24, 2014, was made available online on August 28, 2014.

The patent's assignee is InCube Labs, LLC.

News editors obtained the following quote from the background information supplied by the inventors: "The skin consist of three main layers: the epidermis (the outermost layer), the dermis and subcutaneous tissue. Tattooing or marking of the skin involves embedding dyes into one or both of the epidermal or dermal layers. Typically, this is done using needles. However, use of needles is a painful process which has various associated health risks including infection (e.g., from contaminated needles) allergic and phototoxic reactions. Also, many of the dyes currently used can fade over time. Thus, there is need in the art for improved tattooing methods of the skin."

As a supplement to the background information on this patent application, VerticalNews correspondents also obtained the inventor's summary information for this patent application: "Embodiments described herein provide methods for using electrically based intradermal delivery methods such as intradermal iontophoresis for producing markings or tattoos in the skin.

"One embodiment of the invention provides an apparatus for producing markings in the skin comprising a housing having a proximal and distal end and a reservoir for the storage of a skin colorant. A portion of the housing is configured to be held in the hand of a user. An electrode is positioned within the housing with a portion positioned to be electrically coupled to the skin colorant in the reservoir. The electrode is configured to be electrically coupled to a current source and a return electrode. A colorant applicator is coupled to the distal end of the housing. The applicator has a proximal and distal end and at least one fluid pathway. The proximal end of the applicator is positioned such that the at least one fluid pathway is coupled with the reservoir. The distal end of the applicator is configured to apply colorant to the skin surface through the at least one fluid pathway as the applicator is moved across the skin. The electrode is configured to deliver current from the current source to the skin to transport charged pigment elements of the colorant into the skin using an electromotive driving force to produce a marking in the skin from the pigment elements.

"The at least one fluid pathway can comprise a lumen extending from the proximal to the distal end of the applicator or a portion thereof with fluid be delivered through the pathway. The size and material properties of the lumen can be configured to deliver the fluid using capillary action and in particular embodiments, the walls of the lumen can be treated to enhance the driving forces of capillary action. In preferred embodiments, the applicator can comprise a felt or other porous material such that the applicator wicks colorant from the reservoir onto the skin as the applicator tip is passed over the skin. In such embodiments, the at least one fluid path way comprises a plurality of pathways. Use of felt or other porous material for the applicator also allows the tip of the applicators to act as a dispersion element to disperse or distribute current at the interface between the applicator and the skin surface by providing a plurality of conductive pathways to the skin surface. Additionally, it allows for the applicator to be conformable to the contour of the skin surface as the applicator is moved across the skin. Other conformable materials may also be used.

"In various embodiments, the distal end or other portion of the applicator can be shaped or otherwise configured to produce a selectable current density at the interface between the applicator and the skin surface. In particular embodiments, such as those employing felt, foam or another porous material, the distal portion of the applicator can be configured as a current dispersion element which disperses or distributes current at the interface between the applicator and the skin surface by providing a plurality of conductive pathways to the skin surface. In other embodiments, the applicator can include a current concentrating element such as a hollow stylus or tube that allows for the concentration of current density at the interface between the applicator and the skin surface. The current concentrating element can be attached to the porous applicator tip so that current is more concentrated (yielding a higher current density) in one location and less concentrated (yielding a lower current density), in another location. This gradient in current densities can be used to drive varying amounts of colorant into the skin over a selected target site to produce darker and lighter areas of markings and/or drive the colorant to varying depths in the skin to produce a similar effect.

"The electrode can comprise various materials including stainless steel, other conductive metals as well as carbon, for example, graphite. All or a portion of the electrode can be positioned in the reservoir and electrode is desirably positioned to minimize a voltage drop between the distal tip of the electrode and the colorant applied to the skin. In particular embodiments, the electrode can include a dielectric coating such that there is no flow of electrons between the electrode and the skin surface. Instead, current flows by means of capacitive coupling of the electrode to the colorant and the skin surface. Such embodiments minimize electrochemical degradation of the electrode and prevent unwanted migration of electrode materials into the skin.

"The apparatus can include a controller such as a microprocessor for controlling one or more operational aspects of the apparatus including iontophoretic current and voltage and waveforms, and colorant delivery including rates and amounts. In many embodiments, the apparatus can also include an integral power source such as a lithium ion or other portable battery. In such embodiments, the apparatus can include various power conditioning circuits such as DC-AC converters to provide both alternating and direct current. In other embodiments, the apparatus can be coupled to an external current source such as an AC or DC source by means of one or more electrical connectors.

"The reservoir can be sized to allow for varying time periods of operation depending upon the colorant delivery rate. In various embodiments, the housing can include an optically transparent window to allow a user to ascertain the level of colorant in the reservoir. Also the reservoir may contain a sensor for determining an amount of colorant in the reservoir as well as other parameters such as conductivity/impedance of the colorant. In particular embodiments, the reservoir can include multiple compartments to allow for delivery of different colorants or combinations of colorants. Each compartment can be coupled to the applicator by means of a control valve or like device to allow a user to switch and combine colorants during the application process.

"In an exemplary embodiment of a method of using the invention to mark the skin, the apparatus is coupled to a power source and a return electrode which is positioned on the skin near the target site for marking. The user then places the applicator tip on the target site for marking and may keep the tip stationary or may move the tip across the surface of the skin. Colorant is delivered from the tip to the skin surface using the felt or other porous tip of the applicator. Current is then delivered from the electrode to ionize the colorant and transport the colorant a selected depth into the skin using an electromotive force from the voltage associated with the current. The colorant then produces a marking at the delivered location in the skin from the pigment. Typically, the driving force is an iontophoretic driving force whereby the charged ionized compounds in the colorant are repelled by a like charge from the electrode and migrate into the skin as a result. The colorant can comprise an ionizable pigment such as various iron containing compounds. The colorant may also comprise chargeable nano-particles such as hematite particles which contain a pigment compound. The current can include alternating or direct current as well as combinations thereof. In specific embodiments, the delivered current can comprise a DC component and an AC component. The AC component can be configured to discharge and thus breakdown the build-up of capacitive charge in skin tissue which may impede the migration of colorant into the skin. Also in various embodiments, the current can be modulated (e.g., by changing the waveform, frequency, amplitude, etc) to control the penetration depth of colorant into the skin as well as reduce the pain perception of a person receiving a marking.

"The markings produced by the apparatus can be used for decorative, medical and identification purposes. For the latter two applications, magnetic colorants such as those containing ferrite materials can be used such that they can be detected and read trans-dermally by a magnetic reading device such as a hand held magnetic reader. In use, such embodiments allow a medical practitioner to pre-operatively mark a limb or other portion of the body to be operated on with magnetically readable marking indicating that is the limb or body portion to be operated on. Then immediately prior to surgery, the surgeon would scan the limb with the magnetic reading device to ensure that the limb is the correct limb. Theses and related embodiments serve to reduce the likelihood of error of the wrong limb or other body part being operated on. In related embodiments, the contra-lateral limb which is not be to be operated on can be intradermally marked with readable indicia indicating that it is not the limb to be operated on. In use, such embodiments provide two levels of quality assurance to ensure the correct limb or other intended portion of the anatomy is operated on. That is, before a limb can be operated on, the surgeon must verify to make sure that it is the correct limb and also that it is not the incorrect limb. Such embodiments are particularly useful for reducing the likelihood of human error during a surgical or other medical procedure in operating on the wrong limb or other portion of the anatomy.

"Further details of these and other embodiments and aspects of the invention are described more fully below, with reference to the attached drawing figures.

BRIEF DESCRIPTION OF THE DRAWINGS

"FIG. 1 is a cross sectional view showing the three main layers of the skin, the epidermis, the dermis and subcutaneous tissue.

"FIG. 2 is a schematic view of an embodiment of a system for marking the skin including a handpiece and return electrode.

"FIG. 3 shows an embodiment of a colorant applicator having a plurality of lumens.

"FIG. 4 shows an embodiment of a porous colorant applicator.

"FIG. 5 shows an embodiment of a porous applicator.

"FIG. 6 shows an embodiment of an applicator having a current concentrating element.

"FIG. 7 shows an embodiment of a handpiece for marking the skin having multiple colorant reservoirs."

For additional information on this patent application, see: Imran, Mir. Iontophoretic Apparatus and Method for Marking of the Skin. Filed March 24, 2014 and posted August 28, 2014. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=1526&p=31&f=G&l=50&d=PG01&S1=20140821.PD.&OS=PD/20140821&RS=PD/20140821

Keywords for this news article include: Electromotive, Electronics, InCube Labs, InCube Labs LLC.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Electronics Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters