News Column

Patent Issued for Barrier Panel Device for 3D Image Reproduction, and Method of Driving Same

September 10, 2014



By a News Reporter-Staff News Editor at Electronics Newsweekly -- From Alexandria, Virginia, VerticalNews journalists report that a patent by the inventors Park, Sang-moo (Uijeongbu-si, KR); Chestak, Serguei (Suwon-si, KR); Kim, Dae-sik (Suwon-si, KR); Cha, Kyung-hoon (Yongin-si, KR); Hwang, Seon-deok (Seoul, KR), filed on June 24, 2009, was published online on August 26, 2014.

The patent's assignee for patent number 8816996 is Samsung Electronics Co., Ltd. (Suwon-Si, KR).

News editors obtained the following quote from the background information supplied by the inventors: "The invention relates to a three-dimensional (3D) image reproduction.

"In stereoscopy, the illusion of depth in a three-dimensional (3D) image is achieved via binocular parallax. That is, the apparent difference in the position of an object as seen separately by the human eyes placed at a distance of approximately 65 mm from each other. When two two-dimensional (2D) images of the same object seen by the eyes of a person are transferred to the brain via the retina, the brain merges the 2D images and uses the differences between the images to reconstruct the third dimension (i.e., depth) and obtain a 3D image. Such a phenomenon is called stereography.

"Methods of displaying a 3D image include methods requiring special glasses, requiring no special glasses, holographic displaying, etc.

"Methods of displaying a 3D image that require no special glasses may be classified into parallax barrier methods, in which images are separated and observed via apertures having a longitudinal lattice shape for each image corresponding to the left and right eyes, and lenticular methods, in which a lenticular plate on which semi-cylindrical lenses are arranged is used.

"An apparatus for reproducing a 3D image using the parallax barrier method generates a 3D image by separately displaying stereo images for the left and right eyes. In the parallax barrier method, a user perceives a 3D image by providing a sufficient parallax effect by overlapping longitudinal or latitudinal openings having slit shapes on a flat image for displaying image information for the right and left eyes."

As a supplement to the background information on this patent, VerticalNews correspondents also obtained the inventors' summary information for this patent: "According to an exemplary aspect of the invention, there is provided a barrier panel device for 3D image reproduction, the barrier panel device including: a barrier panel, which includes a first electrode including a plurality of segments parallel to each other, a second electrode including a plurality of barriers parallel to each other and perpendicular to the plurality of segments, and a liquid crystal disposed between the first and second electrodes; a segment driving voltage controller, which controls driving voltages applied to the plurality of segments of the first electrode; and a barrier driving voltage controller, which controls driving voltages applied to the plurality of barriers of the second electrode.

"The barrier driving voltage controller may control an odd barrier driving voltage, which is commonly applied to odd number barriers, and an even barrier driving voltage, which is commonly applied to even number barriers, and control on/off states of the odd and even barrier driving voltages to be periodically repeated while alternating with each other.

"The segment driving voltage controller may control each segment driving voltage to be periodically applied to a corresponding segment, and control a time of changing on/off states of a segment driving voltage of a predetermined segment to be sequentially delayed from a time of changing on/off states of a segment driving voltage of a neighboring segment.

"The barrier driving voltage controller may control the odd and even barrier driving voltages so that the odd barrier driving voltage is in an on state and the even barrier driving voltage is in an off state during a first half cycle of the odd and even barrier driving voltages, and the odd barrier driving voltage may be in an off state and the even barrier driving voltage is in an on state during a second half cycle of the odd and even barrier driving voltages, wherein the on state indicates a predetermined anode voltage value and the off state indicates a voltage value of 0V.

"The barrier driving voltage controller may control one cycle of the odd and even barrier driving voltages to be equal to the quadruple of a cycle of a vertical synchronization signal, and synchronize the odd and even barrier driving voltages based on a point of time that of the vertical synchronization signal is generated.

"The barrier driving voltage controller may control the odd and even barrier driving voltages so that the on/off states are repeated in a high frequency by applying the odd and even barrier driving voltages in a pulse form, wherein the on state indicates a predetermined anode voltage value and the off state indicates a predetermined cathode voltage value.

"The segment driving voltage controller may control each segment driving voltage so that the on/off states of the each segment driving voltage have opposite waveforms during the first half cycle and during the second half cycle, and control the segment driving voltage applied on the plurality of the segments so that times of changing on/off states of the segment driving voltage are sequentially delayed by a predetermined delay time from a time of changing on/off states of the segment driving voltage applied to a first segment during a quadrant cycle of the segment driving voltage, wherein the on state indicates a predetermined anode voltage value and the off state indicates a voltage value of 0V.

"The segment driving voltage controller may determine a predetermined delay time of a predetermined segment to be proportional to a time of displaying an actual image for the 3D image reproduction and a sequence number of the predetermined segment.

"The segment driving voltage controller may control one cycle of the segment driving voltage to be equal to the quadruple of a cycle of a vertical synchronization signal, and synchronize each segment driving voltage based on a point of time that the vertical synchronization signal is generated.

"The segment driving voltage controller may control the on/off states of the segment driving voltage to be repeated in a high frequency by applying the segment driving voltage in an pulse form, and control the segment driving voltage so that times of applying a predetermined segment driving voltage in an on state once to each segment are sequentially shifted by a predetermined delay time during a half cycle of the segment driving voltage, wherein the on state indicates a predetermined anode voltage value and the off state indicates a predetermined cathode voltage value.

"The segment driving voltage controller may control one cycle of the segment driving voltage to be equal to twice the cycle of a vertical synchronization signal, and synchronize each segment driving voltage based on a point of time that the vertical synchronization signal is generated.

"The odd barrier driving voltage that is commonly applied to the odd number barriers, the even barrier driving voltage that is commonly applied to the even number barriers, and the segment driving voltages applied to each segment may be synchronized based on a point of time of a vertical synchronization signal, and the barrier panel device may further include a barrier panel controller, which controls on/off states based on each of an absolute value of an odd barrier switching driving voltage as a difference voltage between the odd barrier driving voltage and the segment driving voltage, and an absolute value of an even barrier switching driving voltage as a difference voltage between the even barrier driving voltage and the segment driving voltage for each segment to be maintained for one cycle of the vertical synchronization signal while alternating with each other per cycle of the vertical synchronization signal.

"According to another exemplary aspect of the invention, there is provided a method of driving a barrier panel device for reproducing a 3D image, the method including: controlling segment driving voltages each being applied to a plurality of segments of a first electrode of the barrier panel, based on a display direction and a cycle of an image signal being displayed on an image display panel for reproducing a 3D image; controlling an odd barrier driving voltage, which is commonly applied to an odd number barriers, and an even barrier driving voltage, which is commonly applied to an even number barriers, from among a plurality of barriers of a second electrode of the barrier panel, based on the display direction; and synchronizing the segment driving voltages, the odd barrier driving voltage, and the even barrier driving voltage, wherein the barrier panel may include the first electrode that includes a plurality of segments parallel to each other, the second electrode that includes a plurality of barriers parallel to each other and perpendicular to the plurality of segments, and a liquid crystal disposed between the first and second electrodes.

"The controlling of the odd and even barrier driving voltages may include controlling the odd and even barrier driving voltages in such a way that on/off states of the odd and even barrier driving voltages are periodically repeated while alternating with each other.

"The controlling of the odd and even barrier driving voltages may further include: maintaining the odd barrier driving voltage in an on state and the even barrier driving voltage in an off state during a first half cycle from among one cycle of the odd and even barrier driving voltages; and maintaining the odd barrier driving voltage in an off state and the even barrier driving voltage in an on state during a second half cycle from among one cycle of the odd and even barrier driving voltages, wherein the on state indicates a predetermined anode voltage value and the off state indicates a voltage value of 0V.

"The controlling of the odd and even barrier driving voltages may further include: controlling one cycle of the odd and even barrier driving voltages to be the quadruple of a cycle of a vertical synchronization signal; and synchronizing the odd and even barrier driving voltages based on a time of the vertical synchronization signal.

"The controlling of the odd and even barrier driving voltages may include controlling on/off states of the odd and even barrier driving voltages to repeat while alternating with each other in a high frequency based on a time of a vertical synchronization signal, by applying the odd and even barrier driving voltages in an impulse form, wherein the on state indicates a predetermined anode voltage value and the off state indicates a predetermined cathode voltage value.

"The controlling of the segment driving voltages may include: controlling each segment driving voltage to be periodically applied; and controlling the segment driving voltages so that times of changing on/off states of a segment driving voltage of a predetermined segment are sequentially delayed from a time of changing on/off states of a segment driving voltage of a neighboring segment.

"The controlling of each segment driving voltage to be periodically applied may include controlling on/off states of a segment driving voltage applied to a predetermined segment to be opposite during a first half cycle and a second half cycle, from one cycle of the segment driving voltage, and the controlling of the segment driving voltages so that times of changing on/off states of a segment driving voltage of a predetermined segment are sequentially delayed from a time of changing on/off states of a segment driving voltage of a neighboring segment includes controlling the segment driving voltage applied on the plurality of the segments in such a way that times of changing on/off states of the segment driving voltage are sequentially delayed by a predetermined delay time from a time of changing on/off states of the segment driving voltage applied to a first segment during a quadrant cycle of the segment driving voltage, wherein the on state indicates a predetermined anode voltage value and the off state indicates a voltage value of 0V.

"The controlling of each segment driving voltage to be periodically applied may include controlling one cycle of the segment driving voltage to be equal to the quadruple of a vertical synchronization signal, and the controlling of the segment driving voltages so that times of changing on/off states of a segment driving voltage of a predetermined segment are sequentially delayed from a time of changing on/off states of a segment driving voltage of a neighboring segment includes synchronizing each segment driving voltage based on a time of the vertical synchronization signal.

"The controlling of each segment driving voltage to be periodically applied may include controlling on/off states of the segment driving voltage to be repeated in a high frequency by applying the segment driving voltage in an impulse form, and the controlling of the segment driving voltages so that times of changing on/off states of a segment driving voltage of a predetermined segment are sequentially delayed from a time of changing on/off states of a segment driving voltage of a neighboring segment includes controlling the segment driving voltage in such a way that times of applying a predetermined segment driving voltage in an on state once to each segment are sequentially shifted by a predetermined delay time during one cycle of the segment driving voltage, wherein the on state indicates a predetermined anode voltage value and the off state indicates a predetermined cathode voltage value.

"The controlling of each segment driving voltage to be periodically applied may further include controlling one cycle of the segment driving voltage to be equal to twice a cycle of a vertical synchronization signal, and the controlling of the segment driving voltages so that times of changing on/off states of a segment driving voltage of a predetermined segment are sequentially delayed from a time of changing on/off states of a segment driving voltage of a neighboring segment includes synchronizing the each segment driving voltage based on a time of the vertical synchronization signal.

"The synchronizing of the segment driving voltages may include synchronizing the odd barrier driving voltage commonly applied to the odd number barriers, the even barrier driving voltage commonly applied to the even number barriers, and the segment driving voltages applied to each segment based on a time of a vertical synchronization signal, and the method may further include controlling on/off states of each based on an absolute value of an odd barrier switching driving voltage as a difference voltage between the odd barrier driving voltage and the segment driving voltage, and an absolute value of an even barrier switching driving voltage as a difference voltage between the even barrier driving voltage and the segment driving voltage for each segment to be maintained for one cycle of the vertical synchronization signal while alternating with each other per cycle of the vertical synchronization signal.

"According to another exemplary aspect of the invention, there is provided an apparatus for reproducing a 3D image, the apparatus including: a light source; an image display panel displaying an image signal; a barrier panel including a first electrode which includes a plurality of segments parallel to each other, a second electrode which includes a plurality of barriers parallel to each other and perpendicular to the plurality of segments, and a liquid crystal which is disposed between the first and second electrodes; and a switching driving voltage controller controlling driving voltages applied to the first and second electrodes based on a display direction and a cycle of the image signal displayed on the image display panel.

"The switching driving voltage controller may control the on/off states based on each of an absolute value of an odd barrier switching driving voltage as a difference voltage between an odd barrier driving voltage commonly applied to odd number barriers of the plurality of barriers and a segment driving voltage applied to the plurality of segments, and an absolute value of an even barrier switching driving voltage as a difference voltage between an even barrier driving voltage commonly applied to even number barriers of the plurality of barriers and the segment driving voltage to be maintained for one cycle of a vertical synchronization signal while alternating with each other per cycle of the vertical synchronization signal.

"The switching driving voltage controller may synchronize the odd barrier driving voltage, the even barrier driving voltage, and the segment driving voltage based on a point of time that the vertical synchronization signal is generated, and control on/off states of the odd and even barrier switching driving voltages to be each maintained for one cycle of the vertical synchronization signal.

"The switching driving voltage controller may include: a second electrode driving voltage controller, which controls on/off states of the odd and even barrier driving voltages to be periodically repeated while alternating with each other; and a first electrode driving voltage controller, which controls the segment driving voltage to be periodically repeated and controls times of changing on/off states of a segment driving voltage of a predetermined segment to be sequentially delayed from a time of changing on/off states of a segment driving voltage of a neighboring segment.

"The second electrode driving voltage controller may control the odd and even barrier driving voltages so that the odd barrier driving voltage is in an on state and the even barrier driving voltage is in an off state during a first half cycle of one cycle of the odd and even barrier driving voltages, and the odd barrier driving voltage is in an off state and the even barrier driving voltage is in an on state during a second half cycle of the one cycle, and the first electrode driving voltage controller may control on/off states of a segment driving voltage applied to a predetermined segment to be opposite during a first half cycle and a second half cycle of one cycle of the segment driving voltage and control the segment driving voltage so that times of changing on/off states of the segment driving voltages of the plurality of segments are sequentially delayed by a predetermined delay time from a time of changing on/off states of a segment driving voltage applied to a first segment during a quadrant cycle of the segment driving voltage based on a time of the vertical synchronization signal, wherein the on state may indicate a predetermined anode voltage value, off state may indicate a voltage value of 0, and a cycle of the odd and even barrier driving voltages and the segment driving voltages may be equal to the quadruple of the cycle of the vertical synchronization signal.

"The second electrode driving voltage controller may control on/off states of the odd and even barrier driving voltages to be repeated in a high frequency based on a time of the vertical synchronization signal by applying the odd and even barrier driving voltage in an impulse form, and the first electrode driving voltage controller may control on/off states of the segment driving voltage to be repeated in a high frequency by applying the segment driving voltage in an impulse form and may control the segment driving voltage so that times of applying a predetermined segment driving voltage in an on state once to each segment are sequentially shifted by a predetermined delay time during one cycle of the segment driving voltage, wherein the on state may indicate a predetermined anode voltage value and the off state may indicate a predetermined cathode voltage value.

"According to another exemplary aspect of the invention, there is provided a computer readable recording medium having recorded thereon a program for executing a method of driving a barrier panel for 3D image reproduction, the method including, when the barrier panel includes a first electrode that includes a plurality of segments parallel to each other, a second electrode that includes a plurality of barriers parallel to each other and perpendicular to the plurality of segments, and a liquid crystal disposed between the first and second electrodes: controlling segment driving voltages each being applied to the plurality of segments of the first electrode of the barrier panel, based on a display direction and a cycle of an image signal being displayed on an image display panel for reproducing a 3D image; controlling an odd barrier driving voltage, which is commonly applied to an odd number barriers, and an even barrier driving voltage, which is commonly applied to an even number barriers, from among the plurality of barriers of the second electrode of the barrier panel, based on the display direction; synchronizing the segment driving voltages, the odd barrier driving voltage, and the even barrier driving voltage; and controlling on/off states of each of an absolute value of an odd barrier switching driving voltage as a difference voltage between the odd barrier driving voltage and the segment driving voltage, and an absolute value of an even barrier switching driving voltage as a difference voltage between the even barrier driving voltage and the segment driving voltage for each segment to be maintained for one cycle of the vertical synchronization signal while alternating with each other per cycle of the vertical synchronization signal."

For additional information on this patent, see: Park, Sang-moo; Chestak, Serguei; Kim, Dae-sik; Cha, Kyung-hoon; Hwang, Seon-deok. Barrier Panel Device for 3D Image Reproduction, and Method of Driving Same. U.S. Patent Number 8816996, filed June 24, 2009, and published online on August 26, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8816996.PN.&OS=PN/8816996RS=PN/8816996

Keywords for this news article include: Electronics, Samsung Electronics Co., Samsung Electronics Co. Ltd.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering arts and entertainment, please see HispanicBusiness' Arts & Entertainment Channel



Source: Electronics Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters