News Column

Patent Issued for Process and Apparatus for a Nanovoided Article

September 3, 2014



By a News Reporter-Staff News Editor at Journal of Engineering -- 3M Innovative Properties Company (St. Paul, MN) has been issued patent number 8808811, according to news reporting originating out of Alexandria, Virginia, by VerticalNews editors.

The patent's inventors are Kolb, William Blake (West Lakeland, MN); Hao, Encai (Woodbury, MN); Kolb, Brant U. (Afton, MN); Phillips, David L. (White Bear Lake, MN).

This patent was filed on March 26, 2010 and was published online on August 19, 2014.

From the background information supplied by the inventors, news correspondents obtained the following quote: "Articles having a structure of nanometer sized pores or voids can be useful for several applications based on optical, physical, or mechanical properties provided by their nanovoided composition. For example, a nanovoided article includes a polymeric solid network or matrix that at least partially surrounds pores or voids. The pores or voids are often filled with a gas such as air. The dimensions of the pores or voids in a nanovoided article can generally be described as having an average effective diameter which can range from about 1 nanometer to about 1000 nanometers. The International Union of Pure and Applied Chemistry (IUPAC) have provided three size categories of nanoporous materials: micropores with voids less than 2 nm, mesopores with voids between 2 nm and 50 nm, and macropores with voids greater than 50 nm. Each of the different size categories can provide unique properties to a nanovoided article.

"Several techniques have been used to create porous or voided articles, including for example polymerization-induced phase separation (PIPS), thermally-induced phase separation (TIPS), solvent-induced phased separation (SIPS), emulsion polymerization, and polymerization with foaming/blowing agents. Often, the porous or voided article produced by these methods requires a washing step to remove materials such as surfactants, oils, or chemical residues used to form the structure. The washing step can limit the size ranges and uniformity of the pores or voids produced. These techniques are also limited in the types of materials that can be used. There is a need for a rapid, reliable technique for producing nanovoided articles that does not require a washing step."

Supplementing the background information on this patent, VerticalNews reporters also obtained the inventors' summary information for this patent: "In one aspect, the present disclosure provides a process for producing a nanovoided article. The process includes providing a first solution that includes a polymerizable material in a solvent and at least partially polymerizing the polymerizable material to form a composition comprising an insoluble polymer matrix and a second solution. The insoluble polymer matrix includes a plurality of nanovoids that are filled with the second solution. The process further includes removing a major portion of the solvent from the second solution.

"In another aspect, the present disclosure provides a process for producing a nanovoided coating. The process includes coating a first solution on a substrate. The first solution includes a polymerizable material in a solvent. The process further includes at least partially polymerizing the polymerizable material to form an insoluble polymer matrix bicontinuous with a plurality of nanovoids and a second solution; the plurality of nanovoids being filled with the second solution. The process further includes removing a major portion of the solvent from the second solution.

"In another aspect, the present disclosure provides a process for producing a low refractive index coating. The process includes coating a dispersion on a substrate. The dispersion includes an ultraviolet (UV) radiation curable material, a photoinitiator, a solvent, and a plurality of nanoparticles. The process further includes irradiating the dispersion with UV radiation to at least partially polymerize the radiation curable material, forming an insoluble polymer matrix binding the plurality of nanoparticles, and including a plurality of nanovoids filled with the dispersion depleted of the polymerizable material and the nanoparticles. The process further includes removing a major portion of the solvent from the dispersion after at least partially polymerizing the polymerizable material.

"In another aspect, the present disclosure provides an apparatus for producing a nanovoided coating. The apparatus includes a webline for conveying a substrate downweb from an unwind roll to a windup roll. The apparatus further includes a coating section disposed proximate the unwind roll and capable of coating a first solution having a polymerizable material in a solvent onto the substrate. The apparatus further includes a polymerization section disposed downweb from the coating section and capable of at least partially polymerizing the polymerizable material to form a composition that includes an insoluble polymer matrix and a second solution. The insoluble polymer matrix includes a plurality of nanovoids filled with the second solution. The apparatus further includes a solvent removal section disposed downweb from the polymerization section, capable of removing a major portion of the solvent from the second solution."

For the URL and additional information on this patent, see: Kolb, William Blake; Hao, Encai; Kolb, Brant U.; Phillips, David L.. Process and Apparatus for a Nanovoided Article. U.S. Patent Number 8808811, filed March 26, 2010, and published online on August 19, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8808811.PN.&OS=PN/8808811RS=PN/8808811

Keywords for this news article include: Nanoparticle, Nanotechnology, Emerging Technologies, 3M Innovative Properties Company.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Journal of Engineering


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters