News Column

Researchers Submit Patent Application, "Reach Assembly with Offset Pivot Points for a Materials Handling Vehicle", for Approval

August 28, 2014



By a News Reporter-Staff News Editor at Politics & Government Week -- From Washington, D.C., VerticalNews journalists report that a patent application by the inventors Soder, Patrick A. (Sidney, OH); Kuck, Jay L. (St. Marys, OH), filed on January 29, 2014, was made available online on August 14, 2014.

The patent's assignee is Crown Equipment Corporation.

News editors obtained the following quote from the background information supplied by the inventors: "Known materials handling vehicles include a power unit, a mast assembly, and a reach assembly. The mast assembly may comprise first, second, and third weldments, wherein the second weldment is capable of moving relative to the first weldment and the third weldment is capable of moving relative to the first and second weldments. First and second lift ram/cylinder assemblies are typically coupled between the first and second weldments for effecting vertical movement of the weldments. The reach assembly may be coupled to the third weldment, and a further ram/cylinder unit may be provided for effecting movement of the reach assembly relative to the third weldment.

"The reach assembly may comprise a mast carriage assembly coupled for vertical movement on the third weldment of the mast assembly and a fork carriage assembly including a pair of forks. The fork carriage assembly may be coupled to the mast carriage assembly via an extension/retraction assembly that comprises one or more pairs of pivotable extension arms that are maneuverable to allow the fork carriage assembly to move horizontally with respect to the mast carriage assembly."

As a supplement to the background information on this patent application, VerticalNews correspondents also obtained the inventors' summary information for this patent application: "In accordance with a first aspect of the present invention, a materials handling vehicle is provided that includes a longitudinal centerline extending from a rear of the materials handling vehicle to a front of the materials handling vehicle. The vehicle comprises a power unit including an operator's compartment and a mast assembly coupled to the power unit. The mast assembly comprises first, second, and third weldments, at least one lift ram/cylinder assembly, at least one lift pulley, and at least one lift chain. The first weldment is fixed to the power unit and comprises a pair of laterally spaced apart vertical first beams that each define a first channel. The second weldment is movable with respect to the first weldment and comprises a pair of laterally spaced apart vertical second beams that each define a second channel, wherein each second beam is at least partially located within the first channel of a respective first beam. The third weldment is movable with respect to the first and second weldments and comprises a pair of laterally spaced apart vertical third beams, wherein each third beam is at least partially located within the second channel of a respective second beam. Each lift ram/cylinder assembly is positioned laterally offset with respect to the longitudinal centerline of the materials handling vehicle. Each lift pulley is fixed to the second weldment and is located between the second weldment and the operator's compartment. Each lift chain is associated with a corresponding lift pulley and has a first end affixed to one of the first weldment and a corresponding lift ram/cylinder assembly, and a second end affixed to the third weldment. The lift chain(s) and the lift pulley(s) are used in combination with the lift ram/cylinder assembly(ies) to effect movement of the second weldment relative to the first weldment.

"The first weldment may comprise a laterally outermost weldment, the second weldment may be located laterally between the first and third weldments, and the third weldment may comprise a laterally innermost weldment.

"The first beams of the first weldment may be the closest beams to forks of the materials handling vehicle, and the third beams of the third weldment may be the closest beams to the operator's compartment.

"The at least one lift chain may comprise first and second lift chains and the at least one lift pulley may comprise first and second lift pulleys. The first and second lift chains and the first and second lift pulleys may be used in combination with the lift ram/cylinder assembly(ies) to effect movement of the third weldment relative to the first and second weldments.

"The lift pulley(s) may each have an axis of rotation generally perpendicular to the longitudinal centerline of the materials handling vehicle.

"The lift pulley(s) may be positioned over the respective lift ram/cylinder assembly(ies). The at least one lift ram/cylinder assembly may comprise first and second ram/cylinder assemblies, wherein the first lift ram/cylinder assembly is located to the left of the longitudinal centerline of the materials handling vehicle, and the second lift ram/cylinder assembly is located to the right of the longitudinal centerline.

"The mast assembly may further comprise at least one primary ram/cylinder assembly for effecting vertical movement of a reach assembly on the third weldment, the reach assembly including a pair of forks that extend generally axially away from the power unit.

"The at least one primary ram/cylinder assembly may be positioned laterally offset with respect to the longitudinal centerline of the materials handling vehicle and may be positioned axially forward from the at least one lift ram/cylinder assembly.

"The second weldment may include at least one cross brace that extends laterally between the second beams and provides structural support for the second weldment, the at least one cross brace being axially spaced from the second beams of the second weldment in a direction toward the operator's compartment.

"The at least one cross brace may be axially spaced from the second beams of the second weldment using counter spring housings that absorb forces when the second weldment bottoms out on the first weldment.

"The third weldment may include at least one cross brace that extends laterally between the third beams and provides structural support for the third weldment.

"The at least one cross brace of the third weldment may be axially spaced from the third beams of the third weldment in a direction toward the operator's compartment.

"In accordance with a second aspect of the present invention, a materials handling vehicle is provided that includes a longitudinal centerline extending from a rear of the materials handling vehicle to a front of the materials handling vehicle. The vehicle comprises a power unit including an operator's compartment and a mast assembly coupled to the power unit. The mast assembly comprises first, second, and third weldments. The first weldment is fixed to the power unit and comprises a pair of laterally spaced apart vertical first beams, each first beam defining a first channel and including axially spaced apart forward and rear lateral first bars that at least partially define the respective first channels. The second weldment is movable with respect to the first weldment and comprises a pair of laterally spaced apart vertical second beams that each define a second channel, each second beam being at least partially located within the first channel of a respective first beam and each second beam including axially spaced apart forward and rear lateral second bars that at least partially define the respective second channels. The third weldment is movable with respect to the first and second weldments and comprises a pair of laterally spaced apart vertical third beams, each third beam being at least partially located within the second channel of a respective second beam and each third beam including axially spaced apart forward and rear lateral third bars. The forward first bars of the first weldment are the closest bars of the mast assembly to forks of the materials handling vehicle. The rear second bars of the second weldment are closer to the operator's compartment than the rear first bars of the first weldment. The rear third bars are the closest bars of the mast assembly to the operator's compartment such that the mast assembly comprises a reverse stack arrangement.

"The materials handling vehicle may further comprise at least one lift ram/cylinder assembly coupled to the second weldment to effect movement of the second weldment relative to the first weldment and to effect movement of the third weldment relative to the first and second weldments.

"The at least one lift ram/cylinder assembly may comprise first and second lift ram/cylinder assemblies and the materials handling vehicle may further comprise first and second lift pulleys fixed to the second weldment and being located between the rear second bars of the second weldment and the operator's compartment. The materials handling vehicle may additionally comprise first and second lift chains associated with the respective first and second lift pulleys, the first and second lift chains each having a first end affixed to one of the first weldment and a respective lift ram/cylinder assembly, and a second end affixed to the third weldment. The first and second lift chains and the first and second lift pulleys are used in combination with the first and second lift ram/cylinder assemblies to effect movement of the second weldment relative to the first weldment and to effect movement of the third weldment relative to the first and second weldments.

"In accordance with a third aspect of the present invention, a reach assembly is provided for use on a materials handling vehicle. The reach assembly comprises a mast carriage assembly coupled for vertical movement on a mast assembly of the materials handling vehicle, a fork carriage assembly comprising a pair of forks, and an extension/retraction mechanism for effecting horizontal movement of the fork carriage assembly relative to the mast carriage assembly. The extension/retraction mechanism comprises at least one first arm having a first end pivotably coupled to the mast carriage assembly and a second end slidably coupled to the fork carriage assembly, and at least one second arm having a first end slidably coupled to the mast carriage assembly and a second end pivotably coupled to the fork carriage assembly. The at least one second arm is pivotably coupled to the at least one first arm at a pivot point that is located: closer to the first end of the at least one first arm than to the second end of the at least one first arm; closer to the second end of the at least one first arm than to the first end of the at least one first arm; closer to the first end of the at least one second arm than to the second end of the at least one second arm; and/or closer to the second end of the at least one second arm than to the first end of the at least one second arm.

"The pivot point may be offset with respect to an axis that extends between locations where the ends of the second arm are respectively coupled to the mast carriage assembly and the fork carriage assembly.

"The second end of the first arm may be slidably received in a curved roller track of the fork carriage assembly such that when the extension/retraction mechanism is extended and retracted the forks of the fork carriage assembly remain substantially level. The curved roller track of the fork carriage assembly may comprise a concave side that faces away from the forks of the fork carriage assembly.

"The first end of the second arm may be slidably received in a generally vertical roller track of the mast carriage assembly.

"The at least one first arm may comprise a pair of first laterally spaced apart arms, and the at least one second arm may comprise a pair of laterally spaced apart second arms. The first arms may be positioned laterally inwardly from the respective second arms, and the first arms may be structurally coupled together.

"The second end of the second arm may be located closer to an operator's compartment of the materials handling vehicle than the first end of the first arm when the extension/retraction mechanism is positioned in a fully retracted position, wherein the operator's compartment is located on an opposite side of the materials handling vehicle than the forks. The second end of the second arm may be located further from the operator's compartment than the first end of the first arm when the extension/retraction mechanism is positioned in an extended position.

"In accordance with a fourth aspect of the present invention, a reach assembly is provided for use on a materials handling vehicle. The reach assembly comprises a mast carriage assembly coupled for vertical movement on a mast assembly of the materials handling vehicle, a fork carriage assembly comprising a pair of forks, and an extension/retraction mechanism for effecting horizontal movement of the fork carriage assembly relative to the mast carriage assembly. The extension/retraction mechanism comprises a pair of laterally spaced apart inner arms having a first ends pivotably coupled to the mast carriage assembly and second ends slidably coupled to the fork carriage assembly, and a pair of laterally spaced apart outer arms positioned laterally outwardly from the inner arms and having first ends slidably coupled to the mast carriage assembly and second ends pivotably coupled to the fork carriage assembly. The inner arms are pivotably coupled to the outer arms at respective pivot points that are located: closer to one of the first and second ends of the respective inner arms than to the other of the first and second ends of the inner arms and closer to one of the first and second ends of the respective outer arms than to the other of the first and second ends of the outer arms.

"The respective pivot points may be offset with respect to axes that extend between locations where the ends of the respective outer arms are respectively coupled to the mast carriage assembly and the fork carriage assembly.

"The second ends of the inner arms may be slidably received in respective curved roller tracks of the fork carriage assembly such that when the extension/retraction mechanism is extended and retracted the forks of the fork carriage assembly remain substantially level. The curved roller tracks of the fork carriage assembly may each comprise a concave side that faces away from the forks of the fork carriage assembly.

"The first ends of the outer arms may be slidably received in generally vertical roller tracks of the mast carriage assembly.

"The second ends of the outer arms may be located closer to an operator's compartment of the materials handling vehicle than the first ends of the inner arms when the extension/retraction mechanism is positioned in a fully retracted position, wherein the operator's compartment is located on an opposite side of the materials handling vehicle than the forks. The second ends of the outer arms may be located further from the operator's compartment than the first ends of the inner arms when the extension/retraction mechanism is positioned in an extended position.

"In accordance with a fifth aspect of the present invention, a reach assembly is provided for use on a materials handling vehicle. The reach assembly comprises a mast carriage assembly coupled for vertical movement on a mast assembly of the materials handling vehicle, a fork carriage assembly comprising a pair of forks, and an extension/retraction mechanism for effecting horizontal movement of the fork carriage assembly relative to the mast carriage assembly. The extension/retraction mechanism comprises a pair of rear first arms having first ends pivotably coupled to the mast carriage assembly and second ends, a pair of front first arms having first ends pivotably coupled to the rear first arms and second ends slidably coupled to the fork carriage assembly, a pair of rear second arms having first ends slidably coupled to the mast carriage assembly and second ends, and a pair of front second arms having first ends pivotably coupled to the rear second arms and second ends pivotably coupled to the fork carriage assembly. At least one of: the rear first arms are pivotably coupled to the rear second arms at respective pivot points that are located closer to one of the first and second ends of the respective rear first arms than to the other of the first and second ends of the rear first arms and/or closer to one of the first and second ends of the respective rear second arms than to the other of the first and second ends of the rear second arms; and the front first arms are pivotably coupled to the front second arms at respective pivot points that are located closer to one of the first and second ends of the respective front first arms than to the other of the first and second ends of the front first arms and/or closer to one of the first and second ends of the respective front second arms than to the other of the first and second ends of the front second arms.

"The rear first arms may comprise rear inner arms, the front first arms may comprise front inner arms, the rear second arms may comprise rear outer arms, and the front second arms may comprise front outer arms.

"The second ends of the front inner arms may be slidably received in respective curved roller tracks of the fork carriage assembly, such that when the extension/retraction mechanism is extended and refracted the forks of the fork carriage assembly remain substantially level.

"The second ends of the rear outer arms may be located closer to an operator's compartment of the materials handling vehicle than the first ends of the rear inner arms when the extension/retraction mechanism is positioned in a fully retracted position, wherein the operator's compartment is located on an opposite side of the materials handling vehicle than the forks. The second ends of the rear outer arms may be located further from the operator's compartment than the first ends of the rear inner arms when the extension/retraction mechanism is positioned in an extended position.

"In accordance with a sixth aspect of the present invention, a reach assembly is provided for use on a materials handling vehicle including an operator's compartment. The reach assembly comprises a mast carriage assembly coupled for vertical movement on a mast assembly of the materials handling vehicle, a fork carriage assembly comprising a pair of forks, and an extension/retraction mechanism for effecting longitudinal movement of the fork carriage assembly relative to the mast carriage assembly. The extension/retraction mechanism comprises a pair of spaced apart inner arms coupled between the mast carriage assembly and the fork carriage assembly, and a pair of spaced apart outer arms laterally outward from the respective inner arms and coupled between the mast carriage assembly and the fork carriage assembly. The outer arms are pivotably coupled to the inner arms to enable the longitudinal movement of the fork carriage assembly relative to the mast carriage assembly. The extension/retraction mechanism further comprises an upper coupling member extending laterally between the inner arms, an intermediate coupling member positioned beneath the upper coupling member and extending laterally between the inner arms, a lower coupling member positioned beneath the intermediate coupling member and extending laterally between the inner arms, the coupling members providing structural rigidity for the extension/retraction mechanism, and first and second operator viewing windows extending longitudinally through the reach assembly when the extension/retraction mechanism is in a retracted position. The first operator viewing window is defined between the upper and intermediate coupling members. The second operator viewing window is vertically spaced apart from the first operator viewing window and is defined between the intermediate and lower coupling members. The operator viewing windows have vertical dimensions that are larger than a vertical height of at least one of the coupling members.

"The operator viewing windows may have vertical dimensions that are larger than each of the coupling members.

"The fork carriage assembly may further comprise a tilt and side shift bar used for tilt and side shift functions. The tilt and side shift bar may be generally vertically in plane with the intermediate coupling member when the extension/retraction mechanism is in a fully retracted position.

"The fork carriage assembly may further comprise a frame, comprising a hanger bar from which the forks extend and a lower member. The tilt and side shift bar, the hanger bar of the frame, and the intermediate coupling member may each intersect a common horizontal plane so as to be longitudinally stacked with one another when the extension/retraction mechanism is in a fully retracted position.

"The lower member of the frame and the lower coupling member may each intersect a common horizontal plane so as to be longitudinally stacked with one another when the extension/retraction mechanism is in a fully retracted position.

"The fork carriage assembly may further comprise an upper cross brace that is located between the upper and intermediate coupling members when the extension/retraction mechanism is in a fully retracted position, the upper cross brace dividing the first operator viewing window into upper and lower first operator viewing window portions.

"The first operator viewing window portions may have vertical dimensions that are larger than at least one of the coupling members.

"The reach assembly may further comprise a piston cylinder assembly for extending and retracting the extension/retraction mechanism to effect longitudinal movement of the fork carriage assembly relative to the mast carriage assembly.

"The piston cylinder assembly may comprise a single cylinder that is laterally offset with respect to a longitudinal centerline of the materials handling vehicle so as to allow improved visibility through the first and second operator viewing windows.

"In accordance with a seventh aspect of the present invention, a reach assembly is provided for use on a materials handling vehicle including an operator's compartment. The reach assembly comprises a mast carriage assembly coupled for vertical movement on a mast assembly of the materials handling vehicle, a fork carriage assembly comprising a frame that supports a pair of forks, a tilting mechanism for effecting tilting movement of the frame relative to the mast carriage assembly, and a pair of tilt limiters that limit the amount of tilting movement that the frame can undergo relative to the mast carriage assembly. The tilt limiters are spaced apart from one another in a lateral direction and are laterally offset with respect to a longitudinal centerline of the materials handling vehicle so as to allow improved visibility from the operator's compartment through an operator viewing space defined between the tilt limiters.

"The tilt limiters may each have a lower abutment surface for contacting an upper surface of a lower member of the frame as the frame is being tilted to define an uppermost tilt position for the frame.

"The tilt limiters may be affixed to vertical members of the fork carriage assembly and may extend from the vertical members in a longitudinal direction toward the forks.

"A lateral distance of the operator viewing space between the tilt limiters may be at least about 150 mm, and a lateral distance of the operator viewing space between the tilt limiters may be at least about 5 times a lateral width of each of the tilt limiters.

"In accordance with an eighth aspect of the present invention, a reach assembly is provided for use on a materials handling vehicle including an operator's compartment. The reach assembly comprises a mast carriage assembly coupled for vertical movement on a mast assembly of the materials handling vehicle, and a fork carriage assembly comprising a pair of forks and being moveable longitudinally with respect to the mast carriage assembly. The mast carriage assembly includes a rear box weldment comprising an upper support plate, a lower support plate vertically spaced from the upper support plate, and a pair of side plates extending from the upper support plate to the lower support plate. The side plates each comprise an intermediate member having first and second side faces that face in a lateral direction of the materials handling vehicle, a rear member extending laterally inwardly from a rear end of the intermediate member, located proximal to the operator's compartment, and having first and second side faces that face in a longitudinal direction of the materials handling vehicle, and a front member extending laterally outwardly from a front end of the intermediate member, located distal to the operator's compartment, and having first and second side faces that face in the longitudinal direction of the materials handling vehicle. The front, intermediate, and rear members of the side plates provide each of the side plates with a cross section having a Z-shape when viewed from above.

"A front portion of an upper surface of the upper support plate of the rear box weldment may be chamfered.

"The intermediate member of each of the first and second side plates may have a larger longitudinal dimension than a lateral dimension of the front and rear members of each of the first and second side plates.

BRIEF DESCRIPTION OF THE DRAWINGS

"While the specification concludes with claims particularly pointing out and distinctly claiming the present invention, it is believed that the present invention will be better understood from the following description in conjunction with the accompanying Drawing Figures, in which like reference numerals identify like elements, and wherein:

"FIG. 1 is a perspective view of a fork lift truck including a mast assembly and a reach assembly constructed in accordance with embodiments of the present invention;

"FIG. 2 is a perspective view of a lower portion of the fork lift truck illustrated in FIG. 1;

"FIG. 3 is a top view of the fork lift truck illustrated in FIG. 1;

"FIG. 4 is an exploded view of the mast assembly and also showing the reach assembly of the fork lift truck of FIG. 1;

"FIG. 5A is a front perspective view of the mast assembly illustrated in FIG. 1 with the reach assembly removed;

"FIG. 5B is a rear perspective view of the mast assembly and the reach assembly of FIG. 1;

"FIG. 6 is a rear perspective view of a middle weldment of the mast assembly of FIG. 1;

"FIG. 7 is a rear perspective view of an inner weldment of the mast assembly of FIG. 1;

"FIG. 8 is a cross sectional view of the mast assembly taken along line 8-8 in FIG. 1, with the reach assembly removed for clarity;

"FIG. 9 is a perspective view showing a lower portion of the mast assembly of FIG. 1, with the reach assembly removed;

"FIGS. 10 and 11 are perspective views illustrating the reach assembly of FIG. 1 in respective fully retracted (FIG. 10) and fully extended (FIG. 11) positions, wherein the mast assembly has been removed for clarity;

"FIG. 11A is a partial cross sectional view through line 11A in FIG. 11;

"FIG. 12 is an exploded perspective view of the reach assembly of FIG. 1;

"FIGS. 13-15 are schematic diagrams illustrating an extension/retraction mechanism of the reach assembly of FIG. 1;

"FIG. 13A is an enlarged view of a portion of FIG. 13;

"FIG. 16 is a side cross sectional view of the reach assembly of FIG. 1;

"FIG. 17 is a rear view of the reach assembly of FIG. 1;

"FIG. 18 is a front perspective view of a portion of the reach assembly of FIG. 1;

"FIG. 19 is a front perspective view of the reach assembly of FIG. 1 shown in a fully lowered position on the mast assembly of the fork lift truck; and

"FIG. 20 is a schematic diagram of a reach assembly in accordance with another aspect of the present invention."

For additional information on this patent application, see: Soder, Patrick A.; Kuck, Jay L. Reach Assembly with Offset Pivot Points for a Materials Handling Vehicle. Filed January 29, 2014 and posted August 14, 2014. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=3866&p=78&f=G&l=50&d=PG01&S1=20140807.PD.&OS=PD/20140807&RS=PD/20140807

Keywords for this news article include: Crown Equipment Corporation.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories on investments and markets, please see HispanicBusiness' Finance Channel



Source: Politics & Government Week


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters