News Column

Patent Issued for Electrokinetic Pump Designs and Drug Delivery Systems

August 20, 2014



By a News Reporter-Staff News Editor at Journal of Engineering -- Eksigent Technologies LLC (Dublin, CA) has been issued patent number 8794929, according to news reporting originating out of Alexandria, Virginia, by VerticalNews editors.

The patent's inventors are Anex, Deon Stafford (Livermore, CA); Schwimmer, Charles Martin (Los Gatos, CA); Black, David Laurence (Los Gatos, CA); Rush, Richard Dean (Belmont, CA); Gearhart, Michael James (Fremont, CA).

This patent was filed on November 22, 2006 and was published online on August 5, 2014.

From the background information supplied by the inventors, news correspondents obtained the following quote: "Pumps and pumping systems exist for the delivery of various fluids. A variety of pumps are used in a number of various different configurations and uses. Pumps are used for infusion of drugs or delivery of drugs into mammals, the sterility of the drugs is very important. In addition, contamination of the drug or delivery fluid from the pump system should be reduced or eliminated. Additionally, it remains an important aspect to minimize contact between the drug to be delivered and the internal components of the pump being used to deliver the drug. Filling or preparing the drug or fluid for delivery should not be time consuming. These and other difficulties are encountered using conventional filling and pumping systems.

"Related U.S. application Ser. No. 11/112,867 filed Apr. 21, 2005 titled, 'Electrokinetic Delivery Systems, Devices and Methods,' discloses a technique for filling a pump with fluid for delivery. This technique involves operating the pump system in reverse to draw the delivery fluid into the pump. Then, after filling the pump with the delivery fluid, the pump direction is reversed and the delivery fluid is delivered from the pump. Reversing pump direction may be a good solution for small amounts of fluid or for pump configurations that have a very high linear flow rate. However, the time requirements for loading large volumes of delivery fluid using this technique may be prohibitive for time conscious applications and problematic for later pump operation.

"What are needed are improved techniques for providing the delivery fluid into the pumping system. The pump filling procedures should be simple and require small amounts of time."

Supplementing the background information on this patent, VerticalNews reporters also obtained the inventors' summary information for this patent: "One embodiment of the invention provides a fluid delivery system having a first chamber, a second chamber and a third chamber; a flow-through pump element separating the first chamber from the second chamber; a moveable pump element separating the second chamber from the third chamber; a first outlet in communication with the third chamber; and a second outlet in communication with the second chamber. In one aspect, the second chamber and the third chamber are within a single housing. In another aspect, the second outlet is in communication with the first chamber. In yet another aspect, the second outlet is in communication with the exterior of the housing. In yet another aspect, there is a moveable pump element in the first chamber. In one aspect, the moveable pump element is separated by the operation of the flow-through pump element. In one aspect, the moveable pump element is a diaphragm. In another aspect, the flow-through pump element is an electrokinetic pump. In another aspect, the electrokinetic pump has electrodes having a double layer capacitance of greater than 10.sup.-4 microfarad/cm.sup.2. In another aspect, there is a valve separating the second outlet from the exterior of the housing. In another aspect, there is a flap separating the second outlet from the exterior of the housing. In another alternative aspect, there is provided a valve positioned in the housing that when actuated allows communication between the third chamber and the exterior of the housing and communication between the second chamber and the first chamber. In another embodiment, a seal separates the second chamber from the moveable element. In yet another aspect there is provided a vent in communication with the first chamber, the second chamber or the third chamber. In yet another embodiment, there is a portion of the housing is shaped to conform to an anatomical contour. In still another alternative, the second chamber or the third chamber comprises a plurality of cells. In one aspect, the plurality of cells are interconnected.

"In another embodiment, there is provided a method of operating a fluid delivery system having a first chamber, a second chamber and a delivery chamber by reducing the volume of the second chamber while increasing the volume of the delivery chamber without operation of a flow-through pump element that separates the second chamber from the first chamber. In one aspect, the reducing step is performed by moving a moveable pump element that separates the second chamber from the delivery chamber. In another aspect, fluid is moved within the second chamber from the second chamber to, a location outside of the housing. In yet another aspect, fluid moves within the second chamber from the second chamber to a location inside of the housing. In one aspect, the fluid moves to a location inside of the first chamber. In another aspect, the method includes opening a fluid pathway from outside the housing to the second chamber before the reducing step. In another aspect, opening a fluid pathway comprises opening a valve. In another aspect, the method includes operating a flow-through pump element that separates the first chamber from the second chamber to reduce the volume of the first chamber and the third chamber. In yet another aspect, the method includes operating a flow-through pump element that separates the first chamber from the second chamber to reduce the volume of the first chamber and increase the volume of the second chamber. In another aspect, the method includes operating a flow-through pump element that separates the first chamber from the second chamber to move a moveable pump element that separates the second chamber from the delivery chamber. In yet another aspect, the method includes operating a flow-through pump element that separates the first chamber from the second chamber to move a delivery fluid within the delivery chamber to a location outside of the housing. In yet another aspect, the method includes operating a valve within the housing to allow fluid flow from outside the housing into the delivery chamber. In another aspect, operating the valve allows fluid flow from the second chamber to the first chamber. In another aspect, the method includes the step of operating a flow-through pump element that separates the first chamber from the second chamber to rupture a seal in the second chamber. In yet another aspect, the method includes the step of operating a flow-through pump element that separates the first chamber from the second chamber to separate a moveable pump element positioned between the second chamber and the delivery chamber."

For the URL and additional information on this patent, see: Anex, Deon Stafford; Schwimmer, Charles Martin; Black, David Laurence; Rush, Richard Dean; Gearhart, Michael James. Electrokinetic Pump Designs and Drug Delivery Systems. U.S. Patent Number 8794929, filed November 22, 2006, and published online on August 5, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8794929.PN.&OS=PN/8794929RS=PN/8794929

Keywords for this news article include: Therapy, Nanotechnology, Electrokinetics, Drug Delivery Systems, Emerging Technologies, Eksigent Technologies LLC.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Journal of Engineering


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters