News Column

Reports from Donghua University Highlight Recent Findings in Gluconacetobacter xylinus (Effects of aromatic compounds on the production of bacterial...

August 19, 2014



Reports from Donghua University Highlight Recent Findings in Gluconacetobacter xylinus (Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus)

By a News Reporter-Staff News Editor at Life Science Weekly -- Current study results on Proteobacteria have been published. According to news reporting from Shanghai, People's Republic of China, by NewsRx journalists, research stated, "Bacterial cellulose (BC) is a polymeric nanostructured fibrillar network produced by certain microorganisms, principally Gluconacetobacter xylinus. BC has a great potential of application in many fields."

The news correspondents obtained a quote from the research from Donghua University, "Lignocellulosic biomass has been investigated as a cost-effective feedstock for BC production through pretreatment and hydrolysis. It is well known that detoxification of lignocellulosic hydrolysates may be required to achieve efficient production of BC. Recent results suggest that phenolic compounds contribute to the inhibition of G. xylinus. However, very little is known about the effect on G. xylinus of specific lignocellulose-derived inhibitors. In this study, the inhibitory effects of four phenolic model compounds (coniferyl aldehyde, ferulic acid, vanillin and 4-hydroxybenzoic acid) on the growth of G. xylinus, the pH of the culture medium, and the production of BC were investigated in detail. The stability of the phenolics in the bacterial cultures was investigated and the main bioconversion products were identified and quantified. Coniferyl aldehyde was the most potent inhibitor, followed by vanillin, ferulic acid, and 4-hydroxybenzoic acid. There was no BC produced even with coniferyl aldehyde concentrations as low as 2 mM. Vanillin displayed a negative effect on the bacteria and when the vanillin concentration was raised to 2.5 mM the volumetric yield of BC decreased to ~40% of that obtained in control medium without inhibitors. The phenolic acids, ferulic acid and 4-hydroxybenzoic acid, showed almost no toxic effects when less than 2.5 mM. The bacterial cultures oxidized coniferyl aldehyde to ferulic acid with a yield of up to 81%. Vanillin was reduced to vanillyl alcohol with a yield of up to 80%. This is the first investigation of the effect of specific phenolics on the production of BC by G. xylinus, and is also the first demonstration of the ability of G. xylinus to convert phenolic compounds. This study gives a better understanding of how phenolic compounds and G. xylinus cultures are affected by each other."

According to the news reporters, the research concluded: "Investigations in this area are useful for elucidating the mechanism behind inhibition of G. xylinus in lignocellulosic hydrolysates and for understanding how production of BC using lignocellulosic feedstocks can be performed in an efficient way."

For more information on this research see: Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus. Microbial Cell Factories, 2014;13():62. (BioMed Central - www.biomedcentral.com/; Microbial Cell Factories - www.microbialcellfactories.com)

Our news journalists report that additional information may be obtained by contacting S. Zhang, China-Sweden Associated Research Laboratory in Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China. Additional authors for this research include S. Winestrand, X. Guo, L. Chen, F. Hong and L.J Jonsson (see also Proteobacteria).

Keywords for this news article include: Asia, Shanghai, Aldehydes, Acetobacteraceae, Rhodospirillales, Organic Chemicals, Alphaproteobacteria, Gram Negative Bacteria, Gluconacetobacter xylinus, People's Republic of China, Gram Negative Aerobic Rods and Cocci.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Life Science Weekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters