News Column

New Findings in Optoelectronics Described from University of Oxford (An optoelectronic framework enabled by low-dimensional phase-change films)

August 20, 2014

By a News Reporter-Staff News Editor at Electronics Newsweekly -- Investigators discuss new findings in Optoelectronics. According to news reporting out of Oxford, United Kingdom, by VerticalNews editors, research stated, "The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states--amorphous and crystalline--in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young's modulus."

Our news journalists obtained a quote from the research from the University of Oxford, "The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films."

According to the news editors, the research concluded: "This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent 'smart' glasses, 'smart' contact lenses and artificial retina devices."

For more information on this research see: An optoelectronic framework enabled by low-dimensional phase-change films. Nature, 2014;511(7508):206-11. (Nature Publishing Group -; Nature -

Our news journalists report that additional information may be obtained by contacting P. Hosseini, Dept. of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK. Additional authors for this research include C.D. Wright and H. Bhaskaran.

Keywords for this news article include: Oxford, Europe, United Kingdom, Optoelectronics, Information Technology, Information and Data Storage.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC

For more stories covering the world of technology, please see HispanicBusiness' Tech Channel

Source: Electronics Newsweekly

Story Tools Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters