News Column

New Findings from Nankai University in Supramolecular Research Provides New Insights (Suprannolecular Chemistry of p-Sulfonatocalix[n]arenes and Its...

August 19, 2014



New Findings from Nankai University in Supramolecular Research Provides New Insights (Suprannolecular Chemistry of p-Sulfonatocalix[n]arenes and Its Biological Applications)

By a News Reporter-Staff News Editor at Life Science Weekly -- Investigators publish new report on Supramolecular Research. According to news reporting out of Tianjin, People's Republic of China, by NewsRx editors, research stated, "CONSPECTUS: Developments in macrocyclic chemistry have led to supramolecular chemistry, a field that has attracted increasing attention among researchers in various disciplines. Notably, the discoveries of new types of macrocyclic hosts have served as important milestones in the field."

Our news journalists obtained a quote from the research from Nankai University, "Researchers have explored the supramolecular chemistry of several classical macrocyclic hosts, including crown ethers, cyclodextrins, calixarenes, and cucurbiturils. Calixarenes represent a third generation of supramolecular hosts after cyclodextrins and crown ethers. Easily modified, these macrocycles show great potential as simple scaffolds to build podand-like receptors. However, the inclusion properties of the cavities of unmodified calixarenes are not as good as those of other common macrocycles. Calixarenes require extensive chemical modifications to achieve efficient endo-complexation. p-Sulfonatocalix[n]arenes (SCnAs, n = 4-8) are a family of water-soluble calixarene derivatives that in aqueous media bind to guest molecules in their cavities. Their cavities are three-dimensional and pi-electron-rich with multiple sulfonate groups, which endow them with fascinating affinities and selectivities, especially toward organic cations. They also can serve as scaffolds for functional, responsive host-guest systems. Moreover, SCnAs are biocompatible, which makes them potentially useful for diverse life sciences and pharmaceutical applications. In this Account, we summarize recent work on the recognition and assembly properties unique to SCnAs and their potential biological applications, by our group and by other laboratories. Initially examining simple host-guest systems, we describe the development of a series of functional host-guest pairs based on the molecular recognition between SCnAs and guest molecules. Such pairs can be used for fluorescent sensing systems, enzymatic activity assays, and pesticide detoxification. Although most macrocyclic hosts prevent self-aggregation of guest molecules, SCnAs can induce self-aggregation. Researchers have exploited calixarene-induced aggregation to construct supramolecular binary vesicles. These vesicles respond to internal and external stimuli, including temperature changes, redox reactions, additives, and enzymatic reactions. Such structures could be used as drug delivery vehicles. Although several biological applications of SCnA.s have been reported, this field is still in its infancy. Continued exploration of the supramolecular chemistry of SCnAs will not only improve the existing biological functions but also open new avenues for the use of SCnAs in the fields of biology, biotechnology, and pharmaceutical research."

According to the news editors, the research concluded: "In addition, we expect that other interdisciplinary research efforts will accelerate developments in the supramolecular chemistry of SCnAs."

For more information on this research see: Suprannolecular Chemistry of p-Sulfonatocalix[n]arenes and Its Biological Applications. Accounts of Chemical Research, 2014;47(7):1925-1934. Accounts of Chemical Research can be contacted at: Amer Chemical Soc, 1155 16TH St, NW, Washington, DC 20036, USA. (American Chemical Society - www.acs.org; Accounts of Chemical Research - www.pubs.acs.org/journal/achre4)

Our news journalists report that additional information may be obtained by contacting D.S. Guo, Nankai Univ, Dept. of Chem, State Key Lab Elementoorgan Chem, Collaborat Innovat Center Chem Sci & Engn Tianjin, Tianjin 300071, People's Republic of China (see also Supramolecular Research).

Keywords for this news article include: Asia, Tianjin, Chemicals, Nanotechnology, Emerging Technologies, Supramolecular Research, Supramolecular Chemistry, People's Republic of China

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Life Science Weekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters