News Column

Patent Issued for Mounting Board and Structure of the Same

July 16, 2014



By a News Reporter-Staff News Editor at Electronics Newsweekly -- From Alexandria, Virginia, VerticalNews journalists report that a patent by the inventors Kashitani, Kohsuke (Fujiyoshida, JP); Fukasawa, Koichi (Fujiyoshida, JP); Takashima, Jun (Kadoma, JP); Kiyozumi, Katsuyuki (Kadoma, JP), filed on February 23, 2011, was published online on July 1, 2014.

The patent's assignee for patent number 8766313 is Citizen Electronics Co., Ltd. (Yamanashi-Ken, JP).

News editors obtained the following quote from the background information supplied by the inventors: "As shown in FIGS. 9 and 10, as an example of an electronic component to be mounted on a mounting board, there is shown a light-emitting diode. The light-emitting diode 2 has a light-emitting element 4, a substrate 6 on which the light-emitting element 4 is mounted, and a pair of patterned electrodes 8 and 10, which are formed to extend from the upper surface to the side surfaces of the substrate 6, or a pair of through hole electrodes 12. Note that the light-emitting element 4 is electrically connected to the pair of patterned electrodes 8 and 10 or the pair of through hole electrodes 12 and then sealed in a resin. The light-emitting are of the light-emitting diode 2 includes the light-emitting element 4 and a resin portion for sealing the light-emitting element 4. A mounting board 16 has a pass-through hole 14, so that the light-emitting area of the light-emitting diode 2 is inserted into the pass-through hole 14 of the mounting board 16. The light-emitting diode 2 is mounted by inserting the light-emitting area of the light-emitting diode 2 into the pass-through hole 14; allowing part of the upper surface of the substrate 6, on which the light-emitting element 4 has been mounted, to be brought into contact with the lower surface of the mounting board 16 such as a circuit board; and then soldering the pair of patterned electrodes 8 and 10 or the pair of through hole electrodes 12 to a pair of patterned electrodes 18 provided on the lower surface of the mounting board 16 to form a solder fillet 20, respectively (for example, see Patent Literature 1).

"In this manner, the light-emitting diode 2 can be mounted by allowing part of the upper surface of the substrate 6 of the light-emitting diode 2 to be brought into contact with the lower surface of the mounting board 16, so that the light-emitting area of the light-emitting diode 2 composed of the light-emitting element 4 and the resin portion in which the light-emitting element 4 is sealed is received within the pass-through hole 14 of the mounting board 16. This makes it possible to reduce the overall thickness when compared with the case of mounting the light-emitting diode 2 not in the pass-through hole but on a surface of the mounting board 16. However, the solder fillet 20 for soldering the light-emitting diode 2 is located on the lower surface of the mounting board 16 and cannot be seen from above the upper surface of the mounting board 16. Thus, the solder fillet 20 cannot be visually checked, so that the mounting board 16 had to be turned upside down in order to check the condition of the solder. On the other hand, as shown in FIG. 11, the solder 21 that is located between the lower surface of the mounting board 16 and the upper surface of the substrate 6 of the light-emitting diode could not be visually checked from outside, thereby raising the problem of a check being required to be made by means of X-ray or the like.

"It was thus necessary to provide at least the pair of patterned electrodes 8 and 10 which extend around the side surfaces of the substrate 6 of the light-emitting diode or the pair of through hole electrodes 12 which penetrate through the substrate 6. However, a light-emitting diode with a substrate having a metal base such as of aluminum and a wiring plate superimposed one on the other would be more expensive than one with an insulating substrate because it is difficult to provide the patterned electrodes extending around the side surfaces and the through hole electrodes. Accordingly, as shown in FIG. 12, it has been suggested that a wiring plate 24 should be set to be greater than a base 22 so as to allow a pair of electrode portions 26 provided respectively on a pair of opposite ends of the wiring plate 24 to overhang and to be thereby soldered to the lower surface of a mounting board 28 (for example, see Patent Literature 2).

"However, when the base 22 was provided with a heat sink 30, the soldered portion of the light-emitting diode shown in FIG. 12 could be visually checked with difficulty even when turned upside down. Furthermore, the overhang portion of the wiring plate 24 had a low strength and thus tended to be damaged when subjected to, for example, the weight of the base 22 or the heat sink 30."

As a supplement to the background information on this patent, VerticalNews correspondents also obtained the inventors' summary information for this patent: "Technical Problem

"The challenges to be addressed by the present invention are to provide a mounting board and a structure of the same which solve the conventional technical problems mentioned above and which enables the condition of solder or a connection portion between the substrate of an electronic component having been mounted and the mounting board to be visually checked from above the upper surface of the mounting board.

"Solution to Problems

"A mounting board of the present invention is to mount thereon an electronic component and more specifically, to mount the upper surface of the substrate of the electronic component onto the lower surface of the mounting board having a pass-through hole. A connection portion for connecting between at least one pair of patterned electrodes provided on the substrate of the electronic component and at least one pair of patterned electrodes on the mounting board is located inside the peripheral side surface defining the pass-through hole of the mounting board. This mounting board is configured such that at least part of the at least one pair of patterned electrodes of the electronic component and at least part of the at least one pair of patterned electrodes of the mounting board are disposed inside the peripheral side surface defining the pass-through hole, and a connection portion for connecting, inside the peripheral side surface defining the pass-through hole, between at least part of the at least one pair of patterned electrodes of the electronic component and at least part of the at least one pair of patterned electrodes of the mounting board is provided inside the pass-through hole. This makes it possible to visually check the condition of connection.

"Furthermore, the at least one pair of patterned electrodes of the mounting board are provided along the pass-through hole that penetrates through the upper and lower surfaces of the mounting board, and extend from the upper surface of the mounting board to the lower surface of the mounting board across the peripheral side surface defining the pass-through hole (a cross section of the mounting board within the pass-through hole). The at least one pair of patterned electrodes of the mounting board include a plurality of patterned electrodes, each being provided independently along the pass-through hole. More specifically, the plurality of patterned electrodes are electrically split to form as a plurality of independent patterned electrodes by providing a plurality of penetrating grooves which are cut into the mounting board from the peripheral side surface defining the pass-through hole so as to penetrate through the upper and lower surfaces.

"Furthermore, the pass-through hole is made up of a combination of a plurality of independent small pass-through holes smaller than the pass-through hole and a punched hole punched at a position adjacent to the small pass-through holes and linking the plurality of small pass-through holes. Each of the plurality of patterned electrodes is formed to extend from the upper surface of the mounting board across the peripheral side surface defining the plurality of independent small pass-through holes to the lower surface of the mounting board. The patterned electrode extending across the peripheral side surface of the small pass-through hole extends from the upper surface of the mounting board across the respective peripheral side surfaces defining the plurality of small pass-through holes to the lower surface.

"Furthermore, the connection portions are disposed to be located inside the respective peripheral side surfaces defining the plurality of small pass-through holes. Furthermore, the punched hole is formed at a position corresponding to the center of the electronic component and receives therein, for example, the light-emitting area of a light-emitting diode. Furthermore, the at least one pair of patterned electrodes of the mounting board are provided to extend along the pass-through hole of the mounting board from the upper surface of the mounting board across the peripheral side surface that defines the pass-through hole to the lower surface of the mounting board. The at least one pair of patterned electrodes are, at the lower surface of the mounting board, to be in contact with the at least one pair of patterned electrodes disposed on the upper surface of the substrate of the electronic component.

"Furthermore, the at least one pair of patterned electrodes of the mounting board are connected by soldering, inside the peripheral side surface defining the pass-through hole, to the at least one pair of patterned electrodes disposed on the upper surface of the substrate of the electronic component and extending inwardly of the pass-through hole past the peripheral side surface defining the pass-through hole of the mounting board. The soldered connection portion appears within the pass-through hole of the mounting board and is visually seen from above the upper surface of the mounting board.

"Furthermore, the plurality of penetrating grooves are formed radially from the peripheral side surface defining the pass-through hole so as to be cut into the mounting board, and furthermore, the patterned electrodes formed in between the plurality of penetrating grooves are provided along the circumference of the pass-through hole. Furthermore, on the surface of the mounting board, it is also acceptable to provide each patterned electrode with a patterned conductor extending radially from each of the plurality of patterned electrodes with the pass-through hole at the center. Furthermore, the electronic component includes, for example, a light-emitting diode.

"On the other hand, a mounting structure with the aforementioned mounting board is configured as follows. For example, suppose the case where the electronic component may include: a substrate made up of a metal base and a wiring plate, the wiring plate being disposed on the upper surface of the base and having at least one pair of patterned electrodes; and at least one semiconductor device electrically connected to the at least one pair of patterned electrodes of the wiring plate. In this case, the mounting board includes: at least one pair of patterned electrodes; an upper surface; a lower surface that is opposed to the upper surface and on that an upper surface of the substrate of the electronic component is mounted, the substrate having the at least one semiconductor device mounted on the upper surface thereof; at least one pass-through hole penetrating through the upper surface and the lower surface; and a peripheral side surface defining the pass-through hole. Thus, the at least one pair of patterned electrodes is partly positioned inside the peripheral side surface that defines the pass-through hole. A connection portion for connecting between the connection of the at least one pair of patterned electrodes of the mounting board and the at least one pair of patterned electrodes of the electronic component is disposed inside the peripheral side surface that defines the pass-through hole. Note that the connection portion appears within the at least one pass-through hole and is visually seen when viewed from above the upper surface of the mounting board. Furthermore, in the present invention, the semiconductor device may be a light-emitting element.

"Advantageous Effects of Invention

"The mounting board of the present invention for mounting thereon an electronic component has an upper surface, a lower surface, a pass-through hole penetrating the upper surface and the lower surface, a peripheral side surface that defines the pass-through hole, and at least one pair of patterned electrodes extending along the pass-through hole from the upper surface to the lower surface across the peripheral side surface. On the other hand, the upper surface of the substrate of the electronic component is mounted on the lower surface of the mounting board, and at least part of at least one pair of patterned electrodes provided on the upper surface of the substrate of the electronic component is disposed to be located inside the pass-through hole past the peripheral side surface that defines the pass-through hole of the mounting board. The electronic component is mounted on the mounting board inside the peripheral side surface that defines the pass-through hole by soldering an electrically conductive portion to the connection of a patterned electrode. Accordingly, when viewed from above the upper surface of the mounting board, a solder fillet or a connection portion is seen within the pass-through hole, allowing the condition of the solder to be visually checked with ease.

"Furthermore, the plurality of patterned electrodes provided along the pass-through hole of the mounting board are split into a plurality of independent patterned electrodes by a plurality of penetrating grooves which are cut into the mounting board so as to penetrate through the upper and lower surfaces from the peripheral side surface that defines the pass-through hole. Accordingly, the mounting board can be easily adapted only by modifying the number and position of penetrating grooves to various electronic component substrates having different numbers and positions of patterned electrodes.

"Furthermore, the mounting board of the present invention can be used to easily mount thereon even an electronic component such as a light-emitting diode with a metal base in which a through hole electrode is difficult to form. Furthermore, the mounting board can be provided on the upper surface thereof with a patterned conductor for circuit wiring in order to provide a sufficient dielectric strength distance between the patterned conductor and the electronic component, thereby providing enhanced reliability.

"Furthermore, for a light-emitting diode employed as the electronic component, most of the patterned electrodes or the like on the light emission side of the light-emitting diode are to be hidden below the mounting board. It is thus possible to visually simplify the outer appearance of the light emission side of the light-emitting diode."

For additional information on this patent, see: Kashitani, Kohsuke; Fukasawa, Koichi; Takashima, Jun; Kiyozumi, Katsuyuki. Mounting Board and Structure of the Same. U.S. Patent Number 8766313, filed February 23, 2011, and published online on July 1, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8766313.PN.&OS=PN/8766313RS=PN/8766313

Keywords for this news article include: Semiconductor, Light-emitting Diode, Citizen Electronics Co. Ltd..

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Electronics Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters