News Column

Patent Issued for Microstrip Line Structures with Alternating Wide and Narrow Portions Having Different Thicknesses Relative to Ground, Method of...

July 16, 2014



Patent Issued for Microstrip Line Structures with Alternating Wide and Narrow Portions Having Different Thicknesses Relative to Ground, Method of Manufacture and Design Structures

By a News Reporter-Staff News Editor at Electronics Newsweekly -- From Alexandria, Virginia, VerticalNews journalists report that a patent by the inventors Mina, Essam (South Burlington, VT); Wang, Guoan (South Burlington, VT); Woods, Jr., Wayne H. (Burlington, VT), filed on December 3, 2010, was published online on July 1, 2014.

The patent's assignee for patent number 8766748 is International Business Machines Corporation (Armonk, NY).

News editors obtained the following quote from the background information supplied by the inventors: "To meet the requirements of the future hand-held and ground communications systems as well as communications satellites, increasing the level of integration in the size and component count is needed. In circuit design, passive components refer to components that are not capable of power gain such as, for example, capacitors, inductors, resistors, diodes, transmission lines and transformers. In circuit design for communications systems, for example, a large area of the board is taken up by passive devices. For example, 90-95% of components in a cellular telephone are passive components, taking up approximately 80% of the total transceiver board, which accounts for about 70% of the cost. To reduce the space taken up by the passive devices, very small discrete passive components and the integration of the passive components are under required.

"Multi-chip module, system on chip (SOC)/system on package (SOP) in which the passive devices and interconnects are incorporated into the carrier substrate offer an attractive solution to further increase the integration. For example, SOC is a fully integrated design with RF passive devices and digital and analog circuits on the same chip. Their operation on CMOS grade silicon, however, is degraded by the high loss of transmission lines and antennas. On the other hand, BiCMOS technologies present a cost effective option to realize highly integrated systems combining analog, microwave design techniques, transmission lines and other passive components.

"In any event, many efforts have been made to reduce the size of the passive devices. For example, to reduce the space taken up by the passive components, discrete passive components have been replaced with on-chip passive components. However, size reduction of passive components may depend at least in part on the further development of on-chip interconnects, such as slow-wave microstrip line (SWML) structures, for microwave and millimeter microwave integrated circuits (MICs), microwave and millimeter monolithic microwave integrated circuits (MMICs), and radiofrequency integrated circuits (RFICs) used in communications systems. In particular, interconnects that promote slow-wave propagation can be employed to reduce the sizes and cost of distributed elements to implement delay lines, variable phase shifters, branchline couplers, voltage-tunable filters, etc. However, advanced microstrip line structures are needed for radiofrequency and microwave integrated circuits to serve as interconnects that promote slow-wave propagation, as well as related design structures for radio frequency and microwave integrated circuits.

"Accordingly, there exists a need in the art to overcome the deficiencies and limitations described hereinabove."

As a supplement to the background information on this patent, VerticalNews correspondents also obtained the inventors' summary information for this patent: "In a first aspect of the invention, a structure comprises at least one ground and a signal layer provided in a different plane than the at least one ground. The signal layer has at least one alternating wide portion and narrow portion with an alternating thickness such that a height of the wide portion is different than a height of the narrow portion with respect to the at least one ground.

"In an another aspect of the invention, a slow wave microstrip line (SWML) structure comprises a signal layer having portions with alternating different thicknesses T1, T2 and heights H1, H2, from a ground line provided below the signal layer. The ground line has a uniform thickness.

"In yet another aspect of the invention, a method of tuning a microstrip line structure comprises tuning at least one of a capacitance and inductance of the microstrip line structure by adjusting at least one of a thickness and spacing of at least one of a wide portion and a narrow portion of a signal layer. The signal layer is at a different plane than ground.

"In another aspect of the invention, a design structure tangibly embodied in a machine readable storage medium for designing, manufacturing, or testing an integrated circuit is provided. The design structure comprises the structures of the present invention. In further embodiments, a hardware description language (HDL) design structure encoded on a machine-readable data storage medium comprises elements that when processed in a computer-aided design system generates a machine-executable representation of the slow-wave microstrip line (SWML), which comprises the structures of the present invention. In still further embodiments, a method in a computer-aided design system is provided for generating a functional design model of the SWML. The method comprises generating a functional representation of the structural elements of the SWML."

For additional information on this patent, see: Mina, Essam; Wang, Guoan; Woods, Jr., Wayne H.. Microstrip Line Structures with Alternating Wide and Narrow Portions Having Different Thicknesses Relative to Ground, Method of Manufacture and Design Structures. U.S. Patent Number 8766748, filed December 3, 2010, and published online on July 1, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8766748.PN.&OS=PN/8766748RS=PN/8766748

Keywords for this news article include: Electronics, Wave Propagation, International Business Machines Corporation.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Electronics Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters