News Column

Findings on Nanomedicine Reported by Researchers at Oregon State University (Comparative toxicological assessment of PAMAM and thiophosphoryl...

July 17, 2014

Findings on Nanomedicine Reported by Researchers at Oregon State University (Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish)

By a News Reporter-Staff News Editor at Gene Therapy Weekly -- New research on Nanomedicine is the subject of a report. According to news reporting from Corvallis, Oregon, by NewsRx journalists, research stated, "Dendrimers are well-defined, polymeric nanomaterials currently being investigated for biomedical applications such as medical imaging, gene therapy, and tissue targeted therapy. Initially, higher generation (size) dendrimers were of interest because of their drug carrying capacity."

The news correspondents obtained a quote from the research from Oregon State University, "However, increased generation was associated with increased toxicity. The majority of studies exploring dendrimer toxicity have focused on a small range of materials using cell culture methods, with few studies investigating the toxicity across a wide range of materials in vivo. The objective of the present study was to investigate the role of surface charge and generation in dendrimer toxicity using embryonic zebrafish (Danio rerio) as a model vertebrate. Due to the generational and charge effects observed at the cellular level, higher generation cationic dendrimers were hypothesized to be more toxic than lower generation anionic or neutral dendrimers with the same core composition. Polyamidoamine (PAMAM) dendrimers elicited significant morbidity and mortality as generation was decreased. No significant adverse effects were observed from the suite of thiophosphoryl dendrimers studied. Exposure to ?50 ppm cationic PAMAM dendrimers G3-amine, G4-amine, G5-amine, and G6-amine caused 100% mortality by 24 hours post-fertilization. Cationic PAMAM G6-amine at 250 ppm was found to be statistically more toxic than both neutral PAMAM G6-amidoethanol and anionic PAMAM G6-succinamic acid at the same concentration. The toxicity observed within the suite of varying dendrimers provides evidence that surface charge may be the best indicator of dendrimer toxicity. Dendrimer class and generation are other potential contributors to the toxicity of dendrimers. Further studies are required to better understand the relative role each plays in driving the toxicity of dendrimers."

According to the news reporters, the research concluded: "To the best of our knowledge, this is the first in vivo study to address such a broad range of dendrimers."

For more information on this research see: Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish. International Journal of Nanomedicine, 2014;9():1947-56 (see also Nanomedicine).

Our news journalists report that additional information may be obtained by contacting J.B. Pryor, Dept. of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States. Additional authors for this research include B.J. Harper and S.L Harper.

Keywords for this news article include: Oregon, Corvallis, Nanomedicine, United States, North and Central America.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC

For more stories covering the world of technology, please see HispanicBusiness' Tech Channel

Source: Gene Therapy Weekly

Story Tools Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters