News Column

Quantum Materials Unveils Uncloneable Anti-Counterfeiting 3D Printing Technology

July 9, 2014

Quantum Materials reported securing 3D printing and additive manufacturing anti-counterfeiting quantum dot detection technology developed at the Institute for Critical Technology and Applied Science and the Design, Research, and Education for Additive Manufacturing Systems (DREAMS) Laboratory at Virginia Tech.

In its release, Quantum said that the technology embeds quantum dots within objects being 3D printed to produce a physically uncloneable signature known only to the object's manufacturer. This new quantum dot security method will help to ensure positive identity of any particular object through a variety of application and detection methods. Novel uses of embedded nanomaterials cover a field of industries of encryption, secure key exchange, the protection of hardware from tampering and other secure identification needs.

David Doderer, QMC VP for Research and Development, stated, "The remarkable number of variations of semiconductor nanomaterials properties QMC can manufacture, coupled with Virginia Tech's anti- counterfeiting process design, combine to offer corporations extreme flexibility in designing physical cryptography systems to thwart counterfeiters. As 3D printing and additive manufacturing technology advances, its ubiquity allows for the easy pirating of protected designs. We are pleased to work with Virginia Tech to develop this technology's security potential in a way that minimizes threats and maximizes 3D printing's future impact on product design and delivery by protecting and insuring the integrity of manufactured products."

Besides the inherent nature of the process technology from Virginia Tech that enables unique signatures, Quantum Materials offers unique semiconductor nanomaterials that physically increase these security measures by not only emitting different colors of the spectra from blue to red, but by using tetrapod quantum dots with precise structural characteristics, or dual emission tetrapods that can emit two different colors. The combination of unique process and nanomaterial improves the security strength, in a similar way that moving from 128-bit to 256-bit encryption increases confidence in a nearly-unbreakable key.

Quantum Materials Corp. develops and manufactures Tetrapod Quantum Dots for use in medical, display, solar energy and lighting applications.

DREAMS Lab members have a vision of the future where "rapid prototyping" technologies are of a maturity to be considered as viable platforms for the manufacture of end-use artifacts.

More information and complete details:

www.dreams.me.vt.edu

www.QMCdots.com

www.SolterraRenewable.com

www.ictas.vt.edu

((Comments on this story may be sent to health@closeupmedia.com))


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Health & Beauty Close - Up


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters