News Column

United States : NASA Launches New Carbon-Sensing Mission to Monitor Earth s Breathing

July 3, 2014



NASA successfully launched its first spacecraft dedicated to studying atmospheric carbon dioxide at 2:56 a.m. PDT (5:56 a.m. EDT) Wednesday.

The Orbiting Carbon Observatory-2 (OCO-2) raced skyward from Vandenberg Air Force Base, California, on a United Launch Alliance Delta II rocket. Approximately 56 minutes after the launch, the observatory separated from the rocket's second stage into an initial 429-mile (690-kilometer) orbit. The spacecraft then performed a series of activation procedures, established communications with ground controllers and unfurled its twin sets of solar arrays. Initial telemetry shows the spacecraft is in excellent condition.

OCO-2 soon will begin a minimum two-year mission to locate Earth s sources of and storage places for atmospheric carbon dioxide, the leading human-produced greenhouse gas responsible for warming our world and a critical component of the planet s carbon cycle.

"Climate change is the challenge of our generation," said NASA Administrator Charles Bolden. "With OCO-2 and our existing fleet of satellites, NASA is uniquely qualified to take on the challenge of documenting and understanding these changes, predicting the ramifications, and sharing information about these changes for the benefit of society."

OCO-2 will take NASA's studies of carbon dioxide and the global carbon cycle to new heights. The mission will produce the most detailed picture to date of natural sources of carbon dioxide, as well as their "sinks" -- places on Earth s surface where carbon dioxide is removed from the atmosphere. The observatory will study how these sources and sinks are distributed around the globe and how they change over time.

"This challenging mission is both timely and important," said Michael Freilich, director of the Earth Science Division of NASA s Science Mission Directorate in Washington. "OCO-2 will produce exquisitely precise measurements of atmospheric carbon dioxide concentrations near Earth's surface, laying the foundation for informed policy decisions on how to adapt to and reduce future climate change."

Carbon dioxide sinks are at the heart of a longstanding scientific puzzle that has made it difficult for scientists to accurately predict how carbon dioxide levels will change in the future and how those changing concentrations will affect Earth's climate.

"Scientists currently don't know exactly where and how Earth's oceans and plants have absorbed more than half the carbon dioxide that human activities have emitted into our atmosphere since the beginning of the industrial era," said David Crisp, OCO-2 science team leader at NASA'sJet Propulsion Laboratory (JPL) in Pasadena, California. "Because of this we cannot predict precisely how these processes will operate in the future as climate changes.


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: TendersInfo (India)


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters