News Column

Patent Issued for Disposible Bio-Analysis Cartridge and Instrument for Conducting Bio-Analysis Using Same

July 30, 2014



By a News Reporter-Staff News Editor at Journal of Engineering -- From Alexandria, Virginia, VerticalNews journalists report that a patent by the inventors Tsai, Shou-Kuan (New Taipei, TW); Amirkhanian, Varouj D. (La Crescenta, CA), filed on August 18, 2011, was published online on July 15, 2014.

The patent's assignee for patent number 8778155 is Bioptic, Inc. (New Taipei, TW).

News editors obtained the following quote from the background information supplied by the inventors: "The present invention relates to instruments for bio-analysis involving detection and analysis of bio-separation through a separation channel, and more particularly to capillary electrophoresis instruments.

"Currently, most of bio-separation tools applied in the laboratories utilize slab gel based electrophoresis technologies, which have routinely been used for bio-analysis of bio-molecules (i.e. DNA, Protein & Carbohydrate) applications since their inception more than 20 years ago. However, slab gel electrophoresis for bio-analysis is labor intensive and needs to be drastically improved in terms of resolving power, throughput and cost per sample.

"Capillary electrophoresis (CE) is a micro fluidic approach to gel-electrophoresis (micro-channel device to simplify gel-electrophoresis), whose greatest advantage is its diverse range of applications. CE technology is commonly accepted by the biotechnology industry specifically in the nucleic acid-based testing as a reliable, high resolution and highly sensitive detection tool, and CE has been applied for protein, carbohydrate and DNA-related analyses such as oligonucleotides analysis, DNA sequencing, and dsDNA fragments analysis. CE is commonly avoided in routine analysis because it is reputed to be a troublesome technique with high failure rates. However this is no longer true because instrument manufacturers have drastically improved instrument design and overall CE knowledge has increased. There are three key factors for reducing failure rate and producing accurate, precise and robust CE data: operator training, system stability, and operation ease of the instrument with low maintenance.

"Capillary Electrophoresis Immunoassay Analysis (CEIA) has recently emerged as a new analytical technique, when combined with sensitive detection methods such as Laser Induced Fluorescence (LIF), offers several advantages over the conventional immunoassays. CEIA can perform rapid separations with high mass sensitivity, simultaneously determine multiple analytes and is compatible with automation. Use of CE and florescence labeled peptides can be used to detect abnormal prion protein in the blood of animals. One such CE-based noncompetitive immunoassay for Prion Protein using Fluorescein isithiocyanate (FITC)-labeled Protein A as Fluorescent probe method has successfully been applied for testing blood samples from scrapie-infected sheep.

"Further, immunoassays are commonly used in biotechnology for the detection and quantification of host cell contaminants. The free-solution approach by CE with fluorescence type detection has brought an exciting alternative to solid-phase immunoassay. The CE with fluorescent type detection eliminates antigen immobilization and avoids many solid-phase-associated problems. This methodology makes use of either a purified antigen labeled with stable fluorescent dye (i.e. FITC) or an affinity probe labeled with the dye (direct assay).

"Without a doubt, CE with laser-induced fluorescence (LIF) is one of the most powerful analytical tools for rapid, high sensitivity and high-resolution dsDNA analysis and immunoassay analysis applications. However, the current selling price for CE-based LIF systems is much more expensive than traditional slab-gel based bio-analysis systems due to the complicated optical detection mechanism. The expensive CE-based systems are thus out of reach for all but a few well-funded laboratories and seems to be a high-cost barrier for the expansion of immunoassay or DNA fragment type analysis applications/business.

"U.S. patent application Ser. No. 13/016,944, now published as U.S. Patent Publication No. 20110253540, discloses a simplified, low cost, efficient, highly sensitive, non-moving and stable micro-optical detection configuration for bio-separation (e.g., capillary electrophoresis) through a separation channel (e.g., defined by a column) filled with a separation support medium (e.g., a liquid or sieving gel including a running buffer). More particularly, the disclosed invention is directed to an improved detection configuration that includes optics for application of incident radiation at and detection of output radiation from a detection zone along the separation channel, for the detection of radiation emitted by sample analytes (e.g., radiation induced fluorescence emission). In one aspect of the disclosed invention, the direction of incident radiation (e.g., from a laser or LED source), the axis of the separation channel at the detection zone, and the direction of collection of the output radiation are all substantially in the same plane. In one embodiment, the incident radiation is provided to the detection zone and/or the output radiation is collected from the detection zone, using light guides in the form of optical fibers. In an embodiment, the detection configuration of the present invention has optical fibers positioned at opposite sides of the detection zone along the separation channel. The optical fibers may be positioned at less than 180 degrees (e.g., 40 to 160 degrees, such as 120 degrees) apart from each other for high detection sensitivity. In another aspect of the disclosed invention, the detection configuration of the present invention incorporates ball-end optical fibers to provide incident radiation and collection of output radiation. In a further aspect of the disclosed invention, the detection optics configuration of the present invention may be implemented in an improved bio-separation instrument, in particular a capillary electrophoresis instrument.

"Based on the above disclosed detection technology, there is a need for a capillary electrophoresis system that is simple and less expensive to operate (i.e. low cost per sample run), providing rapid analysis with high efficiency, sensitivity and throughput."

As a supplement to the background information on this patent, VerticalNews correspondents also obtained the inventors' summary information for this patent: "The present invention provides a simplified, low cost, high efficiency, highly sensitive, high throughput bio-separation system (e.g., capillary electrophoresis system). The bio-separation system includes an instrument that is provided with a detection configuration that includes optics for application of incident radiation at and detection of output radiation from a detection zone along the separation channel, for the detection of radiation emitted by sample analytes (e.g., radiation induced fluorescence emission), without requiring fine alignment of the optics to the separation column. The instrument is configured to conduct bio-separation in the separation channel of the bio-separation cartridge in an automated manner.

"In one aspect of the present invention, the present invention is directed to cartridge-based bio-separation system configured to utilize a reliable, compact, simplified, removable, portable, interchangeable, reusable, low cost, recyclable and/or disposable bio-separation cartridge that is easy to assemble and use with no moving parts and that has an integrated reagent (separation buffer) reservoir. The bio-separation cartridge includes at least one separation channel defined therein. In one embodiment, the bio-separation cartridge is generally the shape of a pen. In one embodiment, the overall size of the cartridge is characterized by the separation channel being no longer than 30 cm, preferably in the range of 15 to 20 cm. The bio-separation system includes an instrument that is provided with a detection configuration that includes optics for application of incident radiation at and detection of output radiation from a detection zone along the separation channel, for the detection of radiation emitted by sample analytes (e.g., radiation induced fluorescence emission) without requiring fine alignment of optics to the capillary column. The instrument is configured to conduct bio-separation in the separation channel of the bio-separation cartridge in an automated manner.

"In another aspect of the present invention, the chemistry of the medium and the characteristics of the capillaries (e.g., capillary size, coating and length) are defined for each cartridge. Different cartridges can be easily interchanged for use in the bio-separation system to suit the particular sample based separation. The reservoir is structured to be coupled to an air pressure pump that pressurizes the gel reservoir to purge and fill the capillaries with buffer as the separation support medium. The cartridge does not require detection optics to be integrated into the cartridge, and the separation channel does not require fine alignment with respect to the detection zones. In one embodiment, the cartridge does not include integrated detection optics.

"In one embodiment, the bio-separation cartridge is provided with a single separation channel. In one embodiment, a capillary column that is supported by and within the cartridge defines the separation channel. In one embodiment of the present invention, the bio-separation system is for capillary electrophoresis separation and analysis, and the instrument therein is structured to utilize the capillary cartridge to conduct capillary electrophoresis separation, detection and analysis in an automated manner. In another embodiment, the structure of the single channel cartridge could be extended to structure a multi-channel (e.g., 4, 8 or 12) cartridge (e.g., having multi-capillary columns) for higher throughout applications."

For additional information on this patent, see: Tsai, Shou-Kuan; Amirkhanian, Varouj D.. Disposible Bio-Analysis Cartridge and Instrument for Conducting Bio-Analysis Using Same. U.S. Patent Number 8778155, filed August 18, 2011, and published online on July 15, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8778155.PN.&OS=PN/8778155RS=PN/8778155

Keywords for this news article include: Bioptic, Bioptic Inc., Biotechnology, Technology.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Journal of Engineering


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters