News Column

Researchers Submit Patent Application, "Multilayer Ceramic Capacitor and Method of Manufacturing the Same", for Approval

July 30, 2014



By a News Reporter-Staff News Editor at Electronics Newsweekly -- From Washington, D.C., VerticalNews journalists report that a patent application by the inventor KIM, Hyung Joon (Hwaseong, KR), filed on March 12, 2014, was made available online on July 17, 2014.

The patent's assignee is Samsung Electro-mechanics Co., Ltd.

News editors obtained the following quote from the background information supplied by the inventors: "The present invention relates to a multilayer ceramic capacitor and a method of manufacturing the same, and more particularly, to a high-capacity multilayer ceramic capacitor having excellent reliability and a method of manufacturing the same.

"Generally, electronic components using a ceramic material such as a capacitor, an inductor, a piezoelectric element, a varistor, a thermistor, or the like, include a ceramic body made of a ceramic material, inner electrodes formed within the ceramic body, and outer electrodes mounted on surfaces of the ceramic body so as to be connected to the inner electrodes.

"The multilayer ceramic capacitor, among ceramic electronic components, is configured to include a plurality of stacked dielectric layers, inner electrodes disposed to be opposed to each other, having each dielectric layer therebetween, and outer electrodes electrically connected to the inner electrodes.

"The multilayer ceramic capacitor has been widely used as a component of a mobile communication apparatus such as a computer, a PDA, a mobile phone, or the like, due to advantages such as miniaturization, high capacity, ease of mounting, and the like.

"Recently, as electronic products have become miniaturized and multi-functional, chip parts have also tended to be miniaturized and multi-functional. As a result, there is a need to miniaturize the multilayer ceramic capacitor while increasing the capacity thereof.

"Generally, the multilayer ceramic capacitor may be manufactured as follows. First, an inner electrode is formed by manufacturing a ceramic green sheet and printing a conductive paste on the ceramic green sheet. A green ceramic laminate is manufactured by multilayering the ceramic green sheets, on which the inner electrodes are formed, from several layers to several hundred layers. Thereafter, the solid green ceramic laminate is manufactured by compressing the green ceramic laminate at high temperature and high pressure and the solid green ceramic laminate is subjected to a cutting process to manufacture green chips. Thereafter, the multilayer ceramic capacitor is completed by plasticizing and firing the green chip and then, forming the outer electrodes thereon.

"Recently, as the multilayer ceramic capacitor has been miniaturized and the capacity thereof increased, the ceramic laminate has also been thinned and multilayered. As the ceramic green sheet is thinned and multilayered, a difference in thickness between a ceramic green sheet layer on which the inner electrodes are formed and another ceramic green sheet layer on which the inner electrodes are not formed occurs, and a difference in density therebetween occurs after compressing the ceramic green sheet layers.

"Internal structure defects such as cracks, pores and the like may occur in the ceramic body due to differences in thickness and density."

As a supplement to the background information on this patent application, VerticalNews correspondents also obtained the inventor's summary information for this patent application: "An object of the present invention provides a high-capacity multilayer ceramic capacitor having excellent reliability and a method of manufacturing the same.

"According to an exemplary embodiment of the present invention, there is provided a multilayer ceramic capacitor, including: a multilayer body having a first side and a second side opposed to each other and having a third side and a fourth side connecting the first side to the second side; inner electrodes formed in the multilayer body and formed to be spaced apart from the third side or the fourth side by a predetermined distance; groove portions formed on at least one of top and bottom surfaces of the multilayer body and formed parallel to the third or fourth side by a predetermined distance from the third side or the fourth side; and outer electrodes extended from the third side and the fourth side to the top surface or the bottom surface of the multilayer body to cover the groove portions.

"The multilayer ceramic capacitor may further include first and second side portions formed on the first side and the second side of the multilayer body.

"The first and second side portions may be formed on at least one of the top and bottom surfaces and may include the groove portions formed parallel to the third or fourth side of the multilayer body.

"The groove portions may have a V-shape.

"The first side portion and the second side portion may be made of ceramic slurry.

"The multilayer ceramic capacitor may further include a dummy electrode having a predetermined distance from the inner electrodes and formed within a predetermined distance between the inner electrodes and the third side or the fourth side.

"The dummy electrode may have one end exposed to the third side or the fourth side.

"The multilayer body may be formed by stacking a plurality of dielectric layers having a width forming a distance between the first and second sides, and the inner electrodes may have a width the same as the width of the dielectric layer.

"The multilayer ceramic capacitor may further include a dummy electrode formed on the dielectric layer to be spaced apart from the inner electrodes by a predetermined distance and having a width the same as the width of the dielectric layer.

"The inner electrodes may include a first inner electrode of which one end is exposed to the third side and the other end is formed to be spaced apart from the fourth side by a predetermined distance and a second inner electrode of which one end is exposed to the fourth side and the other end is formed to be spaced apart from the third side by a predetermined distance.

"According to another exemplary embodiment of the present invention, there is provided a method of manufacturing a multilayer ceramic capacitor, including: preparing a first ceramic green sheet on which a plurality of stripe-type first inner electrode patterns are formed to be spaced apart from one another by a predetermined distance and a second ceramic green sheet on which a plurality of stripe-type second inner electrode patterns are formed to be spaced apart from one another by a predetermined distance; forming a ceramic green sheet laminate by alternately stacking the first ceramic green sheet and the second ceramic green sheet in such a manner that a central portion of each of the stripe-type first inner electrode patterns and a predetermined distance between the stripe-type second inner electrode patterns overlap with each other; forming groove portions on at least one of a top surface and a bottom surface of the ceramic green sheet laminate, corresponding to a predetermined distance formed between the stripe-type first inner electrode patterns and a predetermined distance formed between the stripe-type second inner electrode patterns; and cutting the ceramic green sheet laminate.

"The forming of the groove portion may be performed by pressing the ceramic green sheet laminate.

"The method of manufacturing a multilayer ceramic capacitor may further include forming a first dummy electrode pattern within the predetermined distance formed between the stripe-type first inner electrode patterns or a second dummy electrode pattern within the predetermined distance formed between the stripe-type second inner electrode patterns.

"The cutting of the ceramic green sheet laminate may be performed by cutting the ceramic green sheet laminate at a predetermined width such that the ceramic green sheet is cut into bar-type laminates, each bar-type laminate having sides to which the distal edges of first inner electrodes and second inner electrodes are exposed, and groove portions formed in a width direction thereof, and the cutting of the ceramic green sheet laminate further includes forming a first side portion and a second side portion made of ceramic slurry at the sides of the bar-type laminate to which the distal edges of the first inner electrode and the second inner electrode are exposed.

"The method of manufacturing a multilayer ceramic capacitor may further include, after the forming of the first and second side portions, cutting the bar-type laminate into multilayer bodies, each multilayer body having a third side and a fourth side to which respective one ends of the first inner electrodes and the second inner electrodes are exposed, by cutting the central portion of each of the first inner electrodes and a predetermined distance between the second inner electrodes along the same cutting line.

"The method of manufacturing a multilayer ceramic capacitor may further include forming outer electrodes extending from the third or fourth side of the multilayer body to the top surface or the bottom surface of the multilayer body to cover the groove portions.

"The cutting of the ceramic green sheet laminate may be performed by cutting the ceramic green sheet laminate at a predetermined width such that the ceramic green sheet is cut into bar-type laminates, each bar-type laminate having sides to which the distal edges of first inner electrodes and second inner electrodes are exposed, and groove portions formed in a width direction thereof; and cutting the bar-type laminate into multilayer bodies, each multilayer body having a third side and a fourth side to which respective one ends of the first inner electrodes and the second inner electrodes are exposed, by cutting the central portion of each of the first inner electrodes and a predetermined distance between the second inner electrodes along the same cutting line, and the cutting of the ceramic green sheet laminate further includes forming the first and second side portions made of ceramic slurry on the sides of the multilayer body to which the distal edges of the first inner electrodes and the second inner electrodes are exposed.

"The method of manufacturing a multilayer ceramic capacitor may further include forming outer electrodes extending from the third or fourth side of the multilayer body to the top surface or the bottom surface of the multilayer body to cover the groove portions.

BRIEF DESCRIPTION OF THE DRAWINGS

"The above and other aspects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:

"FIG. 1A is a schematic perspective view of a multilayer ceramic capacitor according to an exemplary embodiment of the present invention; and FIG. 1B is a cross-sectional view of the multilayer ceramic capacitor taken along line A-A' of FIG. 1A;

"FIG. 2A is a cross-sectional view of a multilayer ceramic capacitor according to an exemplary embodiment of the present invention; FIG. 2B is an exploded perspective view of a multilayer body and a side portion; FIG. 2C is an exploded perspective view of the multilayer body; and FIG. 2D is a top plan view showing a portion of the multilayer ceramic capacitor; and

"FIGS. 3A to 3F are cross-sectional views and perspective views schematically showing a method of manufacturing a multilayer ceramic capacitor according to an exemplary embodiment of the present invention."

For additional information on this patent application, see: KIM, Hyung Joon. Multilayer Ceramic Capacitor and Method of Manufacturing the Same. Filed March 12, 2014 and posted July 17, 2014. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=6192&p=124&f=G&l=50&d=PG01&S1=20140710.PD.&OS=PD/20140710&RS=PD/20140710

Keywords for this news article include: Electronic Components, Electronics, Samsung Electro-mechanics Co., Samsung Electro-mechanics Co. Ltd.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Electronics Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters