News Column

Researchers Submit Patent Application, "Helmet with Integrated Electronic Components", for Approval

July 30, 2014



By a News Reporter-Staff News Editor at Electronics Newsweekly -- From Washington, D.C., VerticalNews journalists report that a patent application by the inventors Pietrzak, Christopher T. (Scotts Valley, CA); Allen, Scott R. (Scotts Valley, CA); TOMASCHESKI, Joseph D. (Santa Clara, CA), filed on January 2, 2014, was made available online on July 17, 2014.

The patent's assignee is Bell Sports, Inc.

News editors obtained the following quote from the background information supplied by the inventors: "A physical impact to the head of a person may cause serious injury or death. To reduce the probability of such consequences, protective gear, such as a helmet, is often used in activities that are associated with an increased level of risk for a head injury. Examples of such activities include, but are not limited to, skiing, snowboarding, sledding, ice skating, bicycling, rollerblading, rock climbing, skate boarding, motorcycling, and other motorsports. In general, a helmet is designed to maintain its structural integrity and stay secured to the head of a wearer during an impact.

"With increasing frequency, users are capturing 'on board' footage of their activities by attaching video cameras to helmets and other equipment. Typically such cameras are attached by first attaching a bracket to the helmet using adhesive, suction cups, or other methods, and then attaching the camera to the bracket. Such installations can be problematic because the camera and the bracket typically project awkwardly from the helmet. As a result, the camera is highly susceptible to damage from impacts, may cause unwanted aerodynamic drag, and may reduce the stability of the helmet by locating a relatively large mass a relatively large distance from the center of rotation of the helmet."

As a supplement to the background information on this patent application, VerticalNews correspondents also obtained the inventors' summary information for this patent application: "A need exists for an improved helmet comprising integrated electronic components. Accordingly, in an aspect, a helmet can comprise a helmet body comprising an energy absorption layer and an outer shell. A first opening can be formed through the outer shell and extend into the energy absorbing layer, the first opening comprising a perimeter. A first sleeve can be disposed at least partially within the first opening, the first sleeve comprising a first end comprising a first flange coupled to the outer shell and extending beyond the perimeter of the first opening, and a second end opposite the first end comprising a base disposed over the energy absorption layer. A camera can be coupled to the first sleeve and exposed through the first opening.

"The helmet can further comprise the first sleeve comprising a depth greater than a width or a length. The first flange can be directly coupled to an outer surface or an inner of the outer shell. The outer shell and the first sleeve can be formed of a single integrally formed piece. The first sleeve can be configured to dissipate energy from an impact sustained by the camera, the first sleeve comprising an outer surface configured to be in contact with an area of the energy absorbing layer, a size and a shape of the area selected to dissipate the energy from the impact by deforming the energy absorption layer without the outer surface of the first sleeve breaking through the energy absorbing layer. The energy absorbing layer can comprise a thickness in a range of 10-50 millimeters. The outer surface of the first sleeve comprises a second flange embedded in the energy absorbing layer.

"In another aspect, a helmet can comprise a helmet body. A first opening can comprise a perimeter and can be formed in the helmet body. A first sleeve can be disposed at least partially within the first opening, the first sleeve comprising a first flange coupled to the helmet body and extending beyond the perimeter of the first opening. A first electronic module can be coupled to the first sleeve and exposed through the first opening.

"The helmet can further comprise the first sleeve comprising a depth greater than a width or a length. The first sleeve can be configured to dissipate energy from an impact sustained by the first electronic module, the first sleeve comprising an outer surface configured to be in contact with an area of the helmet body, a size and a shape of the area selected to dissipate the energy from the impact by deforming an energy absorption layer of the helmet body without the outer surface of the first sleeve breaking through the energy absorbing layer. The helmet body can comprise an outer shell comprising a thickness in a range of 0.7-15 millimeters. The first flange can extend beyond the perimeter of the first opening and overlap the outer shell by a distance in a range of 0.5-30 millimeters. The helmet can further comprise a second opening formed through the outer shell, a second sleeve disposed at least partially within the second opening, and a second electronic module disposed within the second sleeve and configured to be in communication with the camera.

"In another aspect, a helmet can comprise a helmet body. A first opening can be formed in the helmet body. A sleeve can be disposed at least partially within the opening, the sleeve comprising a depth greater than a length or width and a flange coupled to the helmet body. A camera can be disposed within the sleeve and exposed through the first opening.

"The helmet can further comprise the helmet body comprising an outer shell and an energy absorption layer, wherein both the flange and a base of the sleeve contact the energy absorption layer. The sleeve can be configured to dissipate energy from an impact sustained by the camera, the sleeve comprising an outer surface configured to be in contact with an area of the helmet body, a size and a shape of the area selected to dissipate the energy from the impact by deforming an energy absorption layer of the helmet body without the outer surface of the sleeve breaking through the energy absorbing layer. The energy absorbing layer can comprise a thickness in a range of 10-50 millimeters. The outer surface of the sleeve can comprise an additional flange embedded in the energy absorbing layer. The flange can be coupled to an outer shell of the helmet body. The flange can extend beyond a perimeter of the opening and overlap the outer shell by a distance in a range of 0.5-30 millimeters.

BRIEF DESCRIPTION OF THE DRAWINGS

"The disclosure will now be described by way of example, with reference to the accompanying drawings.

"FIGS. 1A-1E include front, right, back, top, and bottom views of a first helmet having a plurality of integrated electronic components.

"FIG. 2 shows an exploded view of the helmet of FIG. 1A.

"FIGS. 3A-3B include first and second perspective views of the helmet of FIG. 1.

"FIGS. 4A-4F show additional detail of a sleeve configured to receive an electronic module such as a camera.

"FIG. 5 shows a side view of a second helmet having a plurality of integrated electronic components."

For additional information on this patent application, see: Pietrzak, Christopher T.; Allen, Scott R.; TOMASCHESKI, Joseph D. Helmet with Integrated Electronic Components. Filed January 2, 2014 and posted July 17, 2014. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=6245&p=125&f=G&l=50&d=PG01&S1=20140710.PD.&OS=PD/20140710&RS=PD/20140710

Keywords for this news article include: Bell Sports, Bell Sports Inc., Electronic Components, Electronics.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Electronics Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters