News Column

Researchers from Lehigh University Report Details of New Studies and Findings in the Area of Enzymes and Coenzymes (Insight into the Role of...

July 29, 2014



Researchers from Lehigh University Report Details of New Studies and Findings in the Area of Enzymes and Coenzymes (Insight into the Role of Substrate-binding Residues in Conferring Substrate Specificity for the Multifunctional Polysaccharide ...)

By a News Reporter-Staff News Editor at Life Science Weekly -- Research findings on Enzymes and Coenzymes are discussed in a new report. According to news originating from Bethlehem, Pennsylvania, by NewsRx correspondents, research stated, "Anionic polysaccharides are of growing interest in the biotechnology industry due to their potential pharmaceutical applications in drug delivery and wound treatment. Chemical composition and polymer length strongly influence the physical and biological properties of the polysaccharide and thus its potential industrial and medical applications."

Our news journalists obtained a quote from the research from Lehigh University, "One promising approach to determining monomer composition and controlling the degree of polymerization involves the use of polysaccharide lyases, which catalyze the depolymerization of anionic polysaccharides via a beta-elimination mechanism. Utilization of these enzymes for the production of custom-made oligosaccharides requires a high degree of control over substrate specificity. Previously, we characterized a polysaccharide lyase (Smlt1473) from Stenotrophomonas maltophilia k279a, which exhibited significant activity against hyaluronan (HA), poly-beta-D-glucuronic acid (poly-GlcUA), and poly-beta-D-mannuronic acid (poly-ManA) in a pH-regulated manner. Here, we utilize a sequence structure guided approach based on a homology model of Smlt1473 to identify nine putative substrate-binding residues and examine their effect on substrate specificity via site-directed mutagenesis. Interestingly, single point mutations H221F and R312L resulted in increased activity and specificity toward poly-ManA and poly-GlcUA, respectively. Furthermore, a W171A mutant nearly eliminated HA activity, while increasing poly-ManA and poly-GlcUA activity by at least 35%. The effect of these mutations was analyzed by comparison with the high resolution structure of Sphingomonas sp. A1-III alginate lyase in complex with poly-ManA tetrasaccharide and by taking into account the structural differences between HA, poly-GlcUA, and poly-ManA."

According to the news editors, the research concluded: "Overall, our results demonstrate that even minor changes in active site architecture have a significant effect on the substrate specificity of Smlt1473, whose structural plasticity could be applied to the design of highly active and specific polysaccharide lyases."

For more information on this research see: Insight into the Role of Substrate-binding Residues in Conferring Substrate Specificity for the Multifunctional Polysaccharide Lyase Smlt1473. Journal of Biological Chemistry, 2014;289(26):18022-18032. Journal of Biological Chemistry can be contacted at: Amer Soc Biochemistry Molecular Biology Inc, 9650 Rockville Pike, Bethesda, MD 20814-3996, USA. (American Society for Biochemistry and Molecular Biology - www.asbmb.org; Journal of Biological Chemistry - www.jbc.org/)

The news correspondents report that additional information may be obtained from L.C. MacDonald, Lehigh University, Dept. of Chem Engn, Bethlehem, PA 18015, United States (see also Enzymes and Coenzymes).

Keywords for this news article include: Bethlehem, Pennsylvania, United States, North and Central America, Carbon-Oxygen Lyases, Enzymes and Coenzymes, Polysaccharide-Lyases

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Life Science Weekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters