News Column

Findings on Life Science Research Reported by Researchers at School of Engineering (Long-term single cell analysis of S. pombe on a microfluidic...

July 29, 2014



Findings on Life Science Research Reported by Researchers at School of Engineering (Long-term single cell analysis of S. pombe on a microfluidic microchemostat array)

By a News Reporter-Staff News Editor at Life Science Weekly -- New research on Life Science Research is the subject of a report. According to news reporting originating in Lausanne, Switzerland, by NewsRx journalists, research stated, "Although Schyzosaccharomyces pombe is one of the principal model organisms for studying the cell cycle, surprisingly few methods have characterized S. pombe growth on the single cell level, and no methods exist capable of analyzing thousands of cells and tens of thousands of cell division events. We developed an automated microfluidic platform permitting S. pombe to be grown on-chip for several days under defined and changeable conditions."

The news reporters obtained a quote from the research from the School of Engineering, "We developed an image processing pipeline to extract and quantitate several physiological parameters including cell length, time to division, and elongation rate without requiring synchronization of the culture. Over a period of 50 hours our platform analyzed over 100000 cell division events and reconstructed single cell lineages up to 10 generations in length. We characterized cell lengths and division times in a temperature shift experiment in which cells were initially grown at 30C and transitioned to 25C. Although cell length was identical at both temperatures at steady-state, we observed transient changes in cell length if the temperature shift took place during a critical phase of the cell cycle. We further show that cells born with normal length do divide over a wide range of cell lengths and that cell length appears to be controlled in the second generation, were large newly born cells have a tendency to divide more rapidly and thus at a normalized cell size."

According to the news reporters, the research concluded: "The platform is thus applicable to measure fine-details in cell cycle dynamics, should be a useful tool to decipher the molecular mechanism underlying size homeostasis, and will be generally applicable to study processes on the single cell level that require large numbers of precision measurements and single cell lineages."

For more information on this research see: Long-term single cell analysis of S. pombe on a microfluidic microchemostat array. Plos One, 2014;9(4):e93466. (Public Library of Science - www.plos.org; Plos One - www.plosone.org)

Our news correspondents report that additional information may be obtained by contacting J.B. Nobs, Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland (see also Life Science Research).

Keywords for this news article include: Lausanne, Switzerland, Europe, Life Science Research.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Life Science Weekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters