News Column

Findings on DNA Research Described by Researchers at University of California (Kinetic mechanism of translocation and dNTP binding in individual DNA...

July 29, 2014



Findings on DNA Research Described by Researchers at University of California (Kinetic mechanism of translocation and dNTP binding in individual DNA polymerase complexes)

By a News Reporter-Staff News Editor at Life Science Weekly -- New research on DNA Research is the subject of a report. According to news reporting out of Santa Cruz, California, by NewsRx editors, research stated, "Complexes formed between phi29 DNA polymerase (DNAP) and DNA fluctuate discretely between the pre-translocation and post-translocation states on the millisecond time scale. The translocation fluctuations can be observed in ionic current traces when individual complexes are captured atop the ?-hemolysin nanopore in an electric field."

Our news journalists obtained a quote from the research from the University of California, "The presence of complementary 2'-deoxynucleoside triphosphate (dNTP) shifts the equilibrium across the translocation step toward the post-translocation state. Here we have determined quantitatively the kinetic relationship between the phi29 DNAP translocation step and dNTP binding. We demonstrate that dNTP binds to phi29 DNAP-DNA complexes only after the transition from the pre-translocation state to the post-translocation state; dNTP binding rectifies the translocation but it does not directly drive the translocation. Based on the measured time traces of current amplitude, we developed a method for determining the forward and reverse translocation rates and the dNTP association and dissociation rates, individually at each dNTP concentration and each voltage. The translocation rates, and their response to force, match those determined for phi29 DNAP-DNA binary complexes and are unaffected by dNTP. The dNTP association and dissociation rates do not vary as a function of voltage, indicating that force does not distort the polymerase active site and that dNTP binding does not directly involve a displacement in the translocation direction."

According to the news editors, the research concluded: "This combined experimental and theoretical approach and the results obtained provide a framework for separately evaluating the effects of biological variables on the translocation transitions and their effects on dNTP binding."

For more information on this research see: Kinetic mechanism of translocation and dNTP binding in individual DNA polymerase complexes. Journal of the American Chemical Society, 2013;135(24):9149-55. (American Chemical Society - www.acs.org; Journal of the American Chemical Society - www.pubs.acs.org/journal/jacsat)

Our news journalists report that additional information may be obtained by contacting K.R. Lieberman, Dept. of Biomolecular Engineering, University of California, Santa Cruz, Baskin School of Engineering, 1156 High Street, MS: SOE2, Santa Cruz, California 95064, United States. Additional authors for this research include J.M. Dahl, A.H. Mai, A. Cox, M. Akeson and H. Wang (see also DNA Research).

Keywords for this news article include: Santa Cruz, California, United States, North and Central America, DNA Research, Enzymes and Coenzymes, Polymerase.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Life Science Weekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters