News Column

Patent Issued for Surgical Fasteners Coated with Wound Treatment Materials

July 8, 2014



By a News Reporter-Staff News Editor at Life Science Weekly -- According to news reporting originating from Alexandria, Virginia, by NewsRx journalists, a patent by the inventor Viola, Frank J. (Sandy Hook, CT), filed on April 5, 2013, was published online on June 24, 2014 (see also Covidien LP).

The assignee for this patent, patent number 8758404, is Covidien LP (Mansfield, MA).

Reporters obtained the following quote from the background information supplied by the inventors: "The present disclosure relates to surgical fasteners and more particularly to surgical fasteners coated with wound treatment materials.

"Generally, coatings for medical devices are useful to create a water absorbent and lubricious coating for surgical instruments, for in-dwelling biomaterials such as stents, screws and internal splints, and for tubing, catheters, wire guides, and the like. Such coatings minimize the trauma of contact of the medical device with tissues and biological fluids. In particular, coatings have been used to provide a slippery and lubricious coating for reducing the coefficient of friction of a surface of a medical device to facilitate movement and maneuverability of the device. Lubricious coatings made from hydrophilic polymers are well-known in the art.

"Medical devices such as surgical fasteners and staples have replaced suturing when joining or anastomosing various body structures, such as, for example, the bowel or bronchus. The surgical stapling devices employed to apply these staples are generally designed to simultaneously cut and seal an extended segment of tissue in a patient, thus vastly reducing the time and risks of such procedures.

"Linear or annular surgical stapling devices are employed by surgeons to sequentially or simultaneously apply one or more linear rows of surgical fasteners, e.g., staples or two-part fasteners, to body tissue for the purpose of joining segments of body tissue together and/or for the creation of anastomosis. Linear surgical stapling devices generally include a pair of jaws or finger-like structures between which body tissue to be joined is placed. When the surgical stapling device is actuated and/or 'fired,' firing bars move longitudinally and contact staple drive members in one of the jaws, and surgical staples are pushed through the body tissue and into/against an anvil in the opposite jaw thereby crimping the staples closed. A knife blade may be provided to cut between the rows/lines of staples. Examples of such linear surgical stapling devices are Models 'GIA.TM.', 'Endo GIA.TM.' and 'Premium Multi-fire TA.TM.' instruments available from United States Surgical, a Division of Tyco Health-Care Group, LP, Norwalk, Conn. and disclosed in, inter alia, U.S. Pat. No. 5,465,896 to Allen et al., U.S. Pat. No. 6,330,965 to Milliman et al., and U.S. Pat. No. 6,817,508 to Racenet et al., the entire contents of each of which are incorporated herein by reference.

"Annular surgical stapling devices generally include an annular staple cartridge assembly including a plurality of annular rows of staples, typically two, an anvil assembly operatively associated with the annular cartridge assembly, and an annular blade disposed internal of the rows of staples.

"Another type of surgical stapler is an end-to-end anastomosis stapler. An example of such a device is a Model 'EEA.TM.' instrument available from United States Surgical, a Division of Tyco Health-Care Group, LP, Norwalk, Conn. and disclosed in, inter alia, U.S. Pat. No. 5,392,979 to Green et al., the entire contents of which is incorporated herein by reference. In general, an end-to-end anastomosis stapler typically places an array of staples into the approximated sections of a patient's bowels or other tubular organs. The resulting anastomosis contains an inverted section of bowel which contains numerous 'B' shaped staples to maintain a secure connection between the approximated sections of bowel.

"In addition to the use of surgical staples, sealants, e.g., biological sealants, can be applied to the surgical site to guard against leakage. Typically, the biological sealants are manually applied to the outer surface of the staple line by a physician by spraying on, brushing on, swabbing on, or any combinations thereof. This manual application of biological sealant can lead to non-uniformity of the thickness of sealant across the staple line and/or omitting a portion of the intended coverage area due to inability to see or reach the desired location.

"A need exists for surgical fasteners and the like for delivering wound treatment material to a target surgical site without adding additional steps or complications to the surgical procedure."

In addition to obtaining background information on this patent, NewsRx editors also obtained the inventor's summary information for this patent: "The present disclosure relates to surgical fasteners and more particularly to surgical fasteners coated with wound treatment materials.

"According to an aspect of the present disclosure, a surgical fastener for use in combination with a surgical fastener applying apparatus is provided. The surgical fastener includes a pair of legs; a crown interconnecting the pair of legs; and a wound treatment material coating at least a portion of the legs and/or crown.

"The wound treatment material may be at least one of an adhesive, a sealant, a hemostat, and a medicament. In an embodiment, the surgical fastener is a staple. In another embodiment, the surgical fastener is a two-part fastener.

"The legs and crown of the surgical fastener may be fabricated from at least one of a non-absorbable and a bio-absorbable material. It is envisioned that the non-absorbable material is at least one of stainless steel and titanium. The bio-absorbable material may be at least one of a homopolymers, copolymers, and a blend of monomers selected from the group consisting of glycolide, glycolic acid, lactide, lactic acid, p-dioxanone, .alpha.-caprolactone and trimethylene carbonate. The bio-absorbable material may also be at least one of Polyglycolic Acid (PGA) and Polylactic Acid (PLA).

"The wound treatment material may be a sealant selected from the group consisting of acrylate, methacrylate functional hydrogels in the presence of a biocompatible photoinitiator, alkyl-cyanoacrylates, isocyanate functional macromers with or without amine functional macromers, succinimidyl ester functional macromers with amine or sulfhydryl functional macromers, epoxy functional macromers with amine functional macromers, mixtures of proteins or polypeptides in the presence of aldehyde crosslinkers, Genipin, water-soluble carbodiimides, and anionic polysaccharides in the presence of polyvalent cations.

"The wound treatment material may also be a sealant selected from the group consisting of isocyanate terminated hydrophilic urethane prepolymers derived from organic polyisocyanates and oxyethylene-based diols or polyols; alpha-cyanoacrylate based adhesives; alkyl ester based cyanoacrylate adhesives; adhesives based on biocompatible cross-linked polymers formed from water soluble precursors having electrophilic and nucleophilic groups capable of reacting and cross-linking in situ; two part adhesive systems including those based upon polyalkylene oxide backbones substituted with one or more isocyanate groups in combination with bioabsorbable diamine compounds, or polyalkylene oxide backbones substituted with one or more amine groups in combination with bioabsorbable diisoycanate compounds; and isocyanate terminated hydrophilic urethane prepolymers derived from aromatic diisocyanates and polyols.

"It is envisioned that the wound treatment material is a hemostat selected from the group consisting of fibrin-based, collagen-based, oxidized regenerated cellulose-based and gelatin-based topical hemostats.

"It is contemplated that the wound treatment material is a medicament selected from the group consisting of drugs, enzymes, growth factors, peptides, proteins, pigments, dyes, diagnostic agents or hemostasis agents, monoclonal antibodies, or any other pharmaceutical used in the prevention of stenosis.

"In an embodiment, the wound treatment material may be impregnated into the legs and the crown. In another embodiment, the wound treatment material completely coats the legs and the crown.

"It is envisioned that each leg includes a sharpened distal end. It is further envisioned that the crown is linear or non-linear."

For more information, see this patent: Viola, Frank J.. Surgical Fasteners Coated with Wound Treatment Materials. U.S. Patent Number 8758404, filed April 5, 2013, and published online on June 24, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8758404.PN.&OS=PN/8758404RS=PN/8758404

Keywords for this news article include: Isocyanates, Organic Chemicals.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Life Science Weekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters