News Column

Patent Application Titled "Counterfeit Prevention for Optical Media" Published Online

July 8, 2014



By a News Reporter-Staff News Editor at Life Science Weekly -- According to news reporting originating from Washington, D.C., by NewsRx journalists, a patent application by the inventors Svidenko, Vicky (Newcastle, WA); Kirovski, Darko (Chicago, IL), filed on December 14, 2012, was made available online on June 26, 2014 (see also Microsoft Corporation).

The assignee for this patent application is Microsoft Corporation.

Reporters obtained the following quote from the background information supplied by the inventors: "Optical media include Compact Disc (CD), Digital Versatile Disc (DVD), Blu-ray Disc, hardware to read optical media, and so on. Optical media are among the most cost-effective ways to store data. Accordingly, optical media is one of the most widespread ways to proliferate protected content. For similar reasons, unfortunately, optical discs are often the target of counterfeiting. A counterfeiter typically obtains an authorized or unauthorized version of digital content, from example, from an authorized or unauthorized version of a disc which stores that content. The counterfeiter then duplicates the content of that disc on a potentially large number of counterfeit discs. Such content may include movies, software, games, or any other type of digital content.

"Manufacturers lose a tremendous amount of revenue due to counterfeiters duplicating and selling the manufacturer's optical media products. Counterfeiting relates to a situation in which the seller defrauds the buyer into believing that a product is authentic and then collects the full market price for the product. The counterfeiter collects substantial revenue with profit margins typically higher than that of the original manufacturer due to lack of research and development, marketing costs, and so on.

"In one approach to reduce to counterfeiting of optical discs and other products, a manufacturer of a product can add a unique identification (ID) to the product. However, such an approach is not always effective. Despite preventative efforts, a counterfeiter can potentially discover the ID and subsequently duplicate the ID on the counterfeit products. In general, conventional methods for detecting counterfeited optical media are unreliable."

In addition to obtaining background information on this patent application, NewsRx editors also obtained the inventors' summary information for this patent application: "Disclosed herein are systems and methods for counterfeit prevention for optical media. An issuance system is configured to receive an optical medium including a fingerprint having at least one probabilistic feature. A probabilistic feature may be a physical feature on an optical medium which will not be read as definitively being one state or another. Instead, the probabilistic feature has both a substantial chance to be read as a first value and a substantial chance to be read as a second value given how the probabilistic feature is defined and the inherent reading inconsistency of a reading device reading a probabilistic feature. For example.

"The issuance system uses probabilistic features to derive an o-DNA signature-at-issuance by reading the probabilistic features of the fingerprint. The issuance system establishes a threshold that represents a boundary between a true positive and a true negative. The issuance system generates authentication information by using the o-DNA signature-at-issuance. The issuance system prints the authenticity information on the optical medium.

"A verification system (e.g., game console, DVD player, CD player, or Blu-ray Disc player, etc.) is configured for receiving an optical medium, which may be authentic or a counterfeit. The verification system receives the o-DNA signature-at-issuance by decrypting data on the optical medium. The o-DNA signature-at-issuance may be also received from the cloud. When a disc is issued, its identification (like serial number, or BCA code) coupled with the signature may be stored on a secure server against which the reader may verify the authenticity of a given disc. The verification system calculates an o-DNA signature-at-verification and compares that to the o-DNA signature-at-issuance. If the comparison reveals a difference that is less than a predetermined threshold, then the optical medium at the verification system is verified as being authentic.

"In one example, a method is provided for verifying authenticity information on an optical medium, wherein the method is carried out by a computer system. The method comprises the following actions: receiving the optical medium including a fingerprint having at least one probabilistic feature, wherein a probabilistic feature is a physical feature having both a substantial chance to be read indeterminately as a first value and a substantial chance to be read indeterminately as a second value; receiving an o-DNA signature-at-issuance, including for each probabilistic feature a value corresponding to a number of times an issuance system had read each probabilistic feature as having the first value, wherein the issuance system had read each probabilistic feature plural times; calculating an o-DNA signature-at-verification by reading each probabilistic feature plural times and assigning to each probabilistic feature a value corresponding to a number of times a verification system read each probabilistic feature as having the first value; and calculating a vector-of-differences between the o-DNA signature-at-issuance and the o-DNA signature-at-verification, wherein the vector-of-differences includes a maximum distance metric between the o-DNA signature-at-issuance and the o-DNA signature-at-verification, and wherein the vector-of-differences indicates a true positive if the maximum distance metric is less than a threshold, and wherein the vector-of-differences indicates a true negative if the maximum distance metric is greater than the threshold.

"In one implementation, the o-DNA at issuance is encrypted on the optical medium, and wherein receiving the o-DNA signature-at-issuance comprises decrypting the o-DNA signature-at-issuance by using a public key. In one implementation, a true positive indicates an optical disc used to generate the o-DNA signature-at-issuance is a same optical disc used to generate the o-DNA signature-at-verification, and wherein a true negative indicates the optical disc used to generate the o-DNA signature-at-issuance is different from an optical disc used to generate the o-DNA signature-at-verification. In one implementation, the calculating the vector-of-differences comprises calculating empirical cumulative distributions, including an empirical cumulative distribution of the o-DNA signature-at-issuance and an empirical cumulative distribution of the o-DNA signature-at-verification. In one implementation, the calculating the vector-of-differences comprises calculating empirical cumulative distributions, including an empirical cumulative distribution of the o-DNA signature-at-issuance and an empirical cumulative distribution of the o-DNA signature-at-verification. In one implementation, the calculating the vector-of-differences comprises the following: calculating empirical cumulative distributions, including an empirical cumulative distribution of the o-DNA signature-at-issuance and an empirical cumulative distribution of the o-DNA signature-at-verification; and establishing the threshold of the true positive as being a predetermined distance between the empirical cumulative distributions, wherein a maximum distance between the empirical cumulative distributions is calculated by using a two-sample Kolmogorov-Smirnov test of similarity. In one implementation, the method further comprises at least one of the following: receiving the threshold from the issuance system; or receiving the threshold by reading authenticity information printed on the optical medium.

"In another example, a method is provided for issuing authenticity information to an optical medium, wherein the method is carried out by a computer system. The method comprises the following actions: generating on the optical medium a fingerprint including at least one probabilistic feature, wherein a probabilistic feature is a physical feature having both a substantial chance to be read indeterminately as a first value and a substantial chance to be read indeterminately as a second value; calculating an o-DNA signature-at-issuance, including reading the fingerprint a predetermined number of times and assigning to each probabilistic feature a value corresponding to a number of times each probabilistic feature is interpreted as the first value; and establishing a threshold that represents a boundary between a true positive from a true negative, and wherein a true positive is indicated by a vector-of-differences between the o-DNA signature-at-issuance and an o-DNA signature-at-verification of the optical medium, and wherein a true negative is indicated by a vector-of-differences between the o-DNA signature-at-issuance and an o-DNA signature-at-verification of a different optical medium.

"In yet another example, one or more computer-readable storage media are provided, comprising one or more instructions to verify authenticity information on an optical medium. The one or more instructions, when executed, direct one or more processors to perform actions comprising the following: receiving the optical medium including a fingerprint having at least one probabilistic feature, wherein a probabilistic feature is a physical feature having both a substantial chance to be read indeterminately as a first value and a substantial chance to be read indeterminately as a second value; receiving an o-DNA signature-at-issuance, including for each probabilistic feature a value corresponding to a number of times an issuance system had read each probabilistic feature as having the first value, wherein the issuance system had read each probabilistic feature plural times; calculating an o-DNA signature-at-verification by reading each probabilistic feature plural times and assigning to each probabilistic feature a value corresponding to a number of times a verification system read each probabilistic feature as having the first value; and calculating a vector-of-differences between the o-DNA signature-at-issuance and the o-DNA signature-at-verification, wherein the vector-of-differences includes a maximum distance metric between the o-DNA signature-at-issuance and the o-DNA signature-at-verification, and wherein the vector-of-differences indicates a true positive if the maximum distance metric is less than a threshold, and wherein the vector-of-differences indicates a true negative if the maximum distance metric is greater than the threshold.

"This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

"FIG. 1 is a conceptual diagram of an example system for reducing the unauthorized duplication of a recording medium.

"FIG. 2 is a conceptual diagram showing one implementation of the optical disc.

"FIG. 3 is a conceptual diagram of a portion of an example fingerprint, encoded output, and a clock.

"FIG. 4 is a graph of an example probability density function of the length of a physical feature (e.g., pit or land) after manufacturing.

"FIG. 5 is a graph showing example results of L readings performed on a deterministic feature.

"FIG. 6 is a graph showing example results of L readings performed on a probabilistic feature.

"FIG. 7 is an example matrix of readings of physical features of a fingerprint on an optical disc.

"FIG. 8 is an example o-DNA signature-at-issuance.

"FIG. 9 is an example o-DNA signature-at-verification.

"FIG. 10 is an example vector-of-differences between the o-DNA signature-at-verification and the o-DNA signature-at-verification.

"FIG. 11 is a graph showing example actual distributions of readings of physical features of optical discs.

"FIG. 12 is a graph showing example empirical cumulative distributions for different discs at issuance and at verification.

"FIG. 13 is a graph showing example empirical cumulative distributions for the same disc at issuance and at verification.

"FIG. 14 is a conceptual diagram showing additional details of the example authenticity issuance system introduced above.

"FIG. 15 is a conceptual diagram showing additional details of the example verification system introduced above.

"FIG. 16 is a conceptual diagram showing additional details of the example examination device implemented by the issuance system and the examination device implemented by the verification system.

"FIG. 17 is a flowchart of an example method to issue authenticity information to an optical medium.

"FIG. 18 is a flowchart of an example method to verify information on an optical medium.

"FIG. 19 illustrates an example implementation of a computing environment that may be used to prevent counterfeiting of optical media.

"FIG. 20 illustrates another example implementation of a computing environment used to prevent counterfeiting of optical media."

For more information, see this patent application: Svidenko, Vicky; Kirovski, Darko. Counterfeit Prevention for Optical Media. Filed December 14, 2012 and posted June 26, 2014. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=36&p=1&f=G&l=50&d=PG01&S1=20140619.PD.&OS=PD/20140619&RS=PD/20140619

Keywords for this news article include: DNA Research, Microsoft Corporation.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Life Science Weekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters