News Column

Researchers from United States Department of Energy Report Details of New Studies and Findings in the Area of Hydrogen (Solar Hydrogen Generation by...

July 25, 2014



Researchers from United States Department of Energy Report Details of New Studies and Findings in the Area of Hydrogen (Solar Hydrogen Generation by a CdS-Au-TiO2 Sandwich Nanorod Array Enhanced with Au Nanoparticle as Electron Relay and ...)

By a News Reporter-Staff News Editor at Energy Weekly News -- Current study results on Hydrogen have been published. According to news originating from Morgantown, West Virginia, by VerticalNews correspondents, research stated, "This paper presents a sandwich-structured CdSAu-TiO2 nanorod array as the photoanode in a photoelectrochemical cell (PEC) for hydrogen generation via splitting water. The gold nanoparticles sandwiched between the TiO2 nanorod and the CdS quantum dot (QD) layer play a dual role in enhancing the solar-to-chemical energy conversion efficiency."

Our news journalists obtained a quote from the research from the United States Department of Energy, "First, the Au nanoparticles serve as an electron relay, which facilitates the charge transfer between CdS and TiO2 when the CdS QDs are photoexcited by wavelengths shorter than 525 nm. Second, the Au nanoparticles act as a plasmonic photosensitizer, which enables the solar-to-hydrogen conversion at wavelengths longer than the band edge of CdS, extending the photoconversion wavelength from 525 to 725 nm. The dual role of Au leads to a photocurrent of 4.07 mA/cm(2) at 0 V (vs AglAgCl) under full solar spectrum irradiation and a maximum solar-to-chemical energy conversion efficiency of 2.8%. An inversion analysis is applied to the transient absorption spectroscopy data, tracking the transfer of electrons and holes in the heterostructure, relating the relaxation dynamics to the underlying coupled rate equation and revealing that trap-state Auger recombination is a dominant factor in interfacial charge transfer. It is found that addition of Au nanoparticles increases the charge-transfer lifetime, reduces the trap-state Auger rate, suppresses the long-time scale back transfer, and partially compensates the negative effects of the surface trap states. Finally, the plasmonic energy-transfer mechanism is identified as direct transfer of the plasmonic hot carriers, and the interfacial Schottky barrier height is shown to modulate the plasmonic hot electron transfer and back transfer. Transient absorption characterization of the charge transfer shows defect states cannot be ignored when designing QD-sensitized solar cells."

According to the news editors, the research concluded: "This facile sandwich structure combines both the electrical and the optical functions of Au nanoparticles into a single structure, which has implications for the design of efficient solar-energy-harvesting devices."

For more information on this research see: Solar Hydrogen Generation by a CdS-Au-TiO2 Sandwich Nanorod Array Enhanced with Au Nanoparticle as Electron Relay and Plasmonic Photosensitizer. Journal of the American Chemical Society, 2014;136(23):8438-8449. Journal of the American Chemical Society can be contacted at: Amer Chemical Soc, 1155 16TH St, NW, Washington, DC 20036, USA. (American Chemical Society - www.acs.org; Journal of the American Chemical Society - www.pubs.acs.org/journal/jacsat)

The news correspondents report that additional information may be obtained from J.T. Li, US DOE, Natl Energy Technol Lab, Morgantown, WV 26507, United States. Additional authors for this research include S.K. Cushing, P. Zheng, T. Senty, F.K. Meng, A.D. Bristow, A. Manivannan and N.Q. Wu.

Keywords for this news article include: Gases, Elements, Hydrogen, Oil & Gas, Morgantown, Nanoparticle, West Virginia, United States, Nanotechnology, Energy Conversion, Inorganic Chemicals, Emerging Technologies, North and Central America

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Energy Weekly News


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters