News Column

Reports from Vanderbilt University Highlight Recent Findings in Biomedicine and Biomedical Engineering (Evaluation of Conoscopic Holography for...

July 23, 2014



Reports from Vanderbilt University Highlight Recent Findings in Biomedicine and Biomedical Engineering (Evaluation of Conoscopic Holography for Estimating Tumor Resection Cavities in Model-Based Image-Guided Neurosurgery)

By a News Reporter-Staff News Editor at Biotech Week -- Data detailed on Biotechnology have been presented. According to news originating from Nashville, Tennessee, by NewsRx correspondents, research stated, "Surgical navigation relies on accurately mapping the intraoperative state of the patient to models derived from preoperative images. In image-guided neurosurgery, soft tissue deformations are common and have been shown to compromise the accuracy of guidance systems."

Our news journalists obtained a quote from the research from Vanderbilt University, "In lieu of whole-brain intraoperative imaging, some advocate the use of intraoperatively acquired sparse data from laser-range scans, ultrasound imaging, or stereo reconstruction coupled with a computational model to drive subsurface deformations. Some authors have reported on compensating for brain sag, swelling, retraction, and the application of pharmaceuticals such as mannitol with these models. To date, strategies for modeling tissue resection have been limited. In this paper, we report our experiences with a novel digitization approach, called a conoprobe, to document tissue resection cavities and assess the impact of resection on model-based guidance systems. Specifically, the conoprobe was used to digitize the interior of the resection cavity during eight brain tumor resection surgeries and then compared against model prediction results of tumor locations. We should note that no effort was made to incorporate resection into the model but rather the objective was to determine if measurement was possible to study the impact on modeling tissue resection. In addition, the digitized resection cavity was compared with early postoperative MRI scans to determine whether these scans can further inform tissue resection. The results demonstrate benefit in model correction despite not having resection explicitly modeled. However, results also indicate the challenge that resection provides for model-correction approaches."

According to the news editors, the research concluded: "With respect to the digitization technology, it is clear that the conoprobe provides important real-time data regarding resection and adds another dimension to our noncontact instrumentation framework for soft-tissue deformation compensation in guidance systems."

For more information on this research see: Evaluation of Conoscopic Holography for Estimating Tumor Resection Cavities in Model-Based Image-Guided Neurosurgery. IEEE Transactions on Biomedical Engineering, 2014;61(6):1833-1843. IEEE Transactions on Biomedical Engineering can be contacted at: Ieee-Inst Electrical Electronics Engineers Inc, 445 Hoes Lane, Piscataway, NJ 08855-4141, USA. (Institute of Electrical and Electronics Engineers - www.ieee.org/; IEEE Transactions on Biomedical Engineering - ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10)

The news correspondents report that additional information may be obtained from A.L. Simpson, Vanderbilt University, Dept. of Neurol Surg, Medical Center, Nashville, TN 37235, United States. Additional authors for this research include K. Sun, T.S. Pheiffer, D.C. Rucker, A.K. Sills, R.C. Thompson and M.I. Miga (see also Biotechnology).

Keywords for this news article include: Biotechnology, Nashville, Tennessee, United States, North and Central America

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Biotech Week


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters