News Column

Recent Findings from University of Auckland Provides New Insights into Cell Biology (Integrated chip-based physiometer for automated fish embryo...

July 22, 2014



Recent Findings from University of Auckland Provides New Insights into Cell Biology (Integrated chip-based physiometer for automated fish embryo toxicity biotests in pharmaceutical screening and ecotoxicology)

By a News Reporter-Staff News Editor at Life Science Weekly -- Researchers detail new data in Life Science Research. According to news originating from Auckland, New Zealand, by NewsRx correspondents, research stated, "Transgenic zebrafish (Danio rerio) models of human diseases have recently emerged as innovative experimental systems in drug discovery and molecular pathology. None of the currently available technologies, however, allow for automated immobilization and treatment of large numbers of spatially encoded transgenic embryos during real-time developmental analysis."

Our news journalists obtained a quote from the research from the University of Auckland, "This work describes the proof-of-concept design and validation of an integrated 3D microfluidic chip-based system fabricated directly in the poly(methyl methacrylate) transparent thermoplastic using infrared laser micromachining. At its core, the device utilizes an array of 3D micromechanical traps to actively capture and immobilize single embryos using a low-pressure suction. It also features built-in piezoelectric microdiaphragm pumps, embryo-trapping suction manifold, drug delivery manifold, and optically transparent indium tin oxide heating element to provide optimal temperature during embryo development. Furthermore, we present design of the proof-of-concept off-chip electronic interface equipped with robotic servo actuator driven stage, innovative servomotor-actuated pinch valves, and embedded miniaturized fluorescent USB microscope. Our results showed that the innovative device has 100% embryo-trapping efficiency while supporting normal embryo development for up to 72 hr in a confined microfluidic environment. We also showed data that this microfluidic system can be readily applied to kinetic analysis of a panel of investigational antiangiogenic agents in transgenic zebrafish lines. The optical transparency and embryo immobilization allow for convenient visualization of developing vasculature patterns in response to drug treatment without the need for specimen re-positioning."

According to the news editors, the research concluded: "The integrated electronic interfaces bring the lab-on-a-chip systems a step closer to realization of complete analytical automation."

For more information on this research see: Integrated chip-based physiometer for automated fish embryo toxicity biotests in pharmaceutical screening and ecotoxicology. Cytometry Part A, 2014;85A(6):537-547. Cytometry Part A can be contacted at: Wiley-Blackwell, 111 River St, Hoboken 07030-5774, NJ, USA. (Wiley-Blackwell - www.wiley.com/; Cytometry Part A - onlinelibrary.wiley.com/journal/10.1002/(ISSN)1552-4930)

The news correspondents report that additional information may be obtained from J. Akagi, University of Auckland, Dept. of Mol Med & Pathol, Auckland 1, New Zealand. Additional authors for this research include F. Zhu, C.J. Hall, K.E. Crosier, P.S. Crosier and D. Wlodkowic (see also Life Science Research).

Keywords for this news article include: Auckland, Life Science Research, Australia and New Zealand

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Life Science Weekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters