News Column

Patent Issued for Reverse Charging Prevention System for Mild Hybrid Vehicle

July 23, 2014



By a News Reporter-Staff News Editor at Electronics Newsweekly -- From Alexandria, Virginia, VerticalNews journalists report that a patent by the inventors Kim, Kwangyeon (Gyeonggi-do, KR); Lee, Jun Yong (Gyeonggi-do, KR); Kang, Chan-Ho (Gyeonggi-do, KR); Kim, Gyoung-Man (Ulsan, KR); Jung, Eun-Jin (Gyeonggi-do, KR); Kim, Hag-Wone (Chungbuk, KR), filed on September 8, 2011, was published online on July 8, 2014.

The patent's assignee for patent number 8773064 is Hyundai Motor Company (Seoul, KR).

News editors obtained the following quote from the background information supplied by the inventors: "(a) Field of the Invention

"The present invention relates to a charging system for a mild hybrid vehicle. More particularly, the present invention relates to a charging system for a mild hybrid vehicle which prevents a super capacitor from being reverse charged quickly by voltage of a battery in a case that a charging voltage of the super capacitor is lower than that of the battery.

"(b) Description of the Related Art

"Recently, environmentally-friendly vehicles such as hybrid vehicles and electric vehicles have attracted increased attention due to energy depletion and environmental pollution. Since hybrid vehicles have an engine as power source, hybrid vehicles do not need to charge a battery by using exterior commercial electricity. Since an electric vehicle, on the contrary, does not have the engine, the electric vehicle must charge the battery periodically by using exterior commercial electricity. In addition, the hybrid vehicle is largely classified into a mild hybrid vehicles and plug-in hybrid vehicle according to charging type. A mild hybrid vehicle charges the battery by using a portion of energy generated at an internal combustion engine, and plug-in hybrid vehicle is a hybrid vehicle that charges the battery by receiving energy from the exterior commercial electricity.

"Since a pure electric vehicle and the plug-in hybrid vehicle receive the energy from exterior commercial electricity, there is a large difference between an input terminal voltage and an output terminal voltage. Therefore, an insulated buck type DC-DC converter using a transformer shown in FIG. 9 is typically used. As shown in FIG. 9, an input capacitor Ci is connected to a terminal of a high-voltage battery 102, an input of a switching element portion 106 having four switching elements Q1, Q2, Q3, and Q4 formed as full bridge is connected to the high-voltage battery 102, and an output of the switching element portion 106 is connected to a primary terminal of the transformer 108 in the insulated buck type DC-DC converter. A voltage of the high-voltage battery 102 is converted into an AC voltage by alternately turning on and off two pairs Q1-Q2 and Q3-Q4 of the switching element portion 106, and the AC voltage is dropped through the transformer 108 so as to apply a low voltage to a secondary coil. After that the low voltage applied to the secondary coil of the transformer 108 is rectified, the rectified voltage is smoothed through an inductor L and a capacitor Co and a DC voltage is charged in a battery 104. A duty ratio D for controlling the insulated buck type DC-DC converter is as follows.

".times..times. ##EQU00001##

"Herein, V.sub.HIGH is the voltage of the high-voltage battery 102, V.sub.LOW is a voltage of the battery 104, N.sub.1 is a winding number of a primary coil, and N.sub.2 is a winding number of the secondary coil.

"Since the transformer is used in the insulated buck type DC-DC converter, efficiency is reduced due to core loss but a high-voltage side and a low-voltage side are electrically insulated. In addition, if a voltage of an output terminal is higher than that of an input terminal, reverse charging does not occur.

"Because the difference between an input terminal voltage and an output terminal voltage of a charging system is small in the mild hybrid vehicle, a non-insulated buck type DC-DC converter shown in FIG. 10 is used instead of using the insulated buck type DC-DC converter which includes the transformer.

"As shown in FIG. 10, the non-insulated buck type DC-DC converter 50 is disposed between a super capacitor 120 in which a voltage generated by the engine is stored and a battery 122. The non-insulated buck type DC-DC converter 50 includes a switching element 126, an inductor 132, a capacitor 134, and a free-wheeling diode 130.

"The non-insulated buck type DC-DC converter 50 calculates a duty ratio from a voltage V.sub.HIGH of the super capacitor 120 being an input and a voltage V.sub.LOW of the battery 122 so as to get a target output voltage, and duty-controls the switching element 126.

"The duty-control means a method that fixes a switching frequency and controls turn-on ratio in a waveform of a period. The duty ratio D of the non-insulated buck type DC-DC converter 50 is as follows.

"##EQU00002##

"Assuming that a minimum value of the duty ratio is represented as D.sub.min, an equivalent impedance of loss is represented as Z.sub.L, a frequency of the switching element 126 is represented as f, an output voltage is represented as V.sub.o, a pulsating output voltage is represented as .DELTA.V.sub.o, a minimum inductance L.sub.min of the inductor 132 and a minimum capacitance C.sub.min of the capacitor 134 used in the circuit are as follows.

".times..times. ##EQU00003## .times..times..times..DELTA..times..times. ##EQU00003.2##

"As known from an above equation, the inductance of the inductor 132 is inversely proportional to the switching frequency f and the capacitance of the capacitor 134 is inversely proportional to square of the switching frequency f. If the switching frequency f is long, the inductance of the inductor 132 and the capacitance of the capacitor 134 can decrease. Therefore, size of the converter can be reduced.

"Because the switching frequency is made longer so as to manufacture a smaller DC-DC converter, a metal-oxide semiconductor field transistor (MOSFET) rather than an insulated gate bipolar transistor (IGBT) is widely used as the switching element. The MOSFET can be used in the circuit using high switching frequency, but is not suitable for use in the circuit using high voltage and high current. The voltage in the super capacitor is typically low (e.g., 15V-30V) but high current flows through the super capacitor in the DC-DC converter of the mild hybrid vehicle. Therefore, the circuit cannot be constructed by using only one MOSFET. Accordingly, more than two switching elements 126 are connected in parallel with each other so as to share current capacity as shown in FIG. 11.

"The super capacitor 120 used in a charging system of the mild hybrid vehicle has a self-discharge circuit such that energy charged in the super capacitor 120 is discharged slowly. Since the discharged super capacitor 120 can be charged in a generating mode after the vehicle is started, the charging voltage of the super capacitor 120 becomes lowered gradually when the vehicle is not driven for a long period of time. If the charging voltage of the super capacitor 120 falls below the voltage of the battery 122, the energy charged in the battery 122 is reverse charged to the super capacitor 120 through a body diode 128 mounted at the switching element 126 of the non-insulated buck type DC-DC converter 124.

"Particularly, when a power system of the mild hybrid vehicle is assembled initially, the charging voltage of the super capacitor 120 is the lowest voltage (e.g., 3V) and difference between the charging voltage of the super capacitor 120 and the voltage of the battery 122 is the largest. Therefore, when assembling the power system initially, high current flows occur. That is, if the discharged super capacitor is connected, the voltage of the battery is lowered and the charging voltage of the super capacitor becomes heightened as shown in FIG. 12.

"The above information disclosed in this Background section is only for enhancement of understanding of the background of the invention and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art."

As a supplement to the background information on this patent, VerticalNews correspondents also obtained the inventors' summary information for this patent: "The present invention has been made in an effort to provide a charging system for a mild hybrid vehicle having advantages of preventing a super capacitor from being reverse charged from a battery through a DC-DC converter due to discharge of the super capacitor in a non-insulated buck type DC-DC converter that charges energy in the super capacitor by using the battery.

"A charging system for a mild hybrid vehicle according to an exemplary embodiment of the present invention may include: an engine; an integrated starter and generator (ISG) connected to the engine and configured to generate 3-phase AC electricity and/or to start the engine. An inverter is configured to convert the 3-phase AC electricity generated at the ISG into DC electricity and/or convert the DC electricity into the 3-phase AC electricity and to deliver the 3-phase AC electricity to the ISG. A super capacitor is configured to receive the DC electricity from the inverter and be charged by the DC electricity, and may alternatively deliver the charged DC electricity to the inverter. Further, a DC-DC converter is connected to the inverter and configured to receive the DC electricity from the inverter and drop voltage, accordingly. A battery is configured to receive the DC electricity from the DC-DC converter and be charged by the DC electricity. Additionally, the present invention also includes a means for preventing reverse charging which is mounted on a path between the super capacitor and the battery and which is configured to prevent energy from flowing from the battery to the super capacitor.

"According to the first exemplary embodiment of the present invention, the DC-DC converter may include a switching element configured to interrupt a circuit. In this case, the means for preventing reverse charging is the switching element in which a body diode is removed. Alternatively in a second exemplary embodiment of the present invention, the means for preventing reverse charging may be a circuit interruption transistor. The circuit interruption transistor may be an IGBT or a power transistor without a body diode. Even further, the means for preventing reverse charging may be a relay.

"According to a fourth exemplary embodiment of the present invention, the means for preventing reverse charging may be a diode forwardly biased from the super capacitor to the battery."

For additional information on this patent, see: Kim, Kwangyeon; Lee, Jun Yong; Kang, Chan-Ho; Kim, Gyoung-Man; Jung, Eun-Jin; Kim, Hag-Wone. Reverse Charging Prevention System for Mild Hybrid Vehicle. U.S. Patent Number 8773064, filed September 8, 2011, and published online on July 8, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8773064.PN.&OS=PN/8773064RS=PN/8773064

Keywords for this news article include: Electronics, High Voltage, Hyundai Motor Company.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Electronics Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters