News Column

Patent Issued for Magnetic-Recording Head with First Thermal Fly-Height Control Element and Embedded Contact Sensor Element Configurable as Second...

July 23, 2014



Patent Issued for Magnetic-Recording Head with First Thermal Fly-Height Control Element and Embedded Contact Sensor Element Configurable as Second Thermal Fly-Height Control Element

By a News Reporter-Staff News Editor at Electronics Newsweekly -- From Alexandria, Virginia, VerticalNews journalists report that a patent by the inventors Kurita, Masayuki (Kanagawa, JP); Shiramatsu, Toshiya (Kanagawa, JP); Kuroki, Kenji (Kanagawa, JP); Shimizu, Yuki (Kanagawa, JP), filed on October 21, 2010, was published online on July 8, 2014.

The patent's assignee for patent number 8773801 is HGST Netherlands B.V. (Amsterdam, NL).

News editors obtained the following quote from the background information supplied by the inventors: "Devices which use various types of recording disks, such as optical disks, magneto-optical disks, or flexible magnetic-recording disks, are known as disk drive devices. Of these, the HDD has spread widely as a storage device for computers and is becoming an indispensable information-storage device in current computer systems. In addition, HDD applications, such as video recording and playback devices, car navigation systems, or portable telephones, are increasing because of the superior characteristics of HDDs.

"A magnetic-recording disk used in an HDD has a plurality of data tracks and a plurality of servo tracks formed in concentric circles on the magnetic-recording disk. A plurality of data sectors containing user data is recorded in each data track. Each servo track contains address information. The servo tracks are constructed from a plurality of servo data regions separated in the circumferential direction; and, one or a plurality of data sectors is recorded between the servo data regions. By accessing the desired data sector in accordance with the address information of the servo data, a magnetic-recording head can write data to a data sector and read back data from a data sector.

"Typically, the HDD includes an integrated circuit (IC), which includes an amplification circuit for amplifying the signal of the head-slider disposed inside of the disk enclosure (DE). Normally, the IC is secured in a module in the vicinity of the pivot shaft of the actuator. Therefore, as described herein, this IC is referred to as arm electronics (AE), which is included in an arm-electronics (AE) module. The amplification circuit in the AE module amplifies the user data signal and the servo data signal read back by the head-slider, as well as the user data signal written by a magnetic-recording head. The AE module includes an internal logic circuit for advanced functions in addition to the amplification circuit. The AE module operates in response to commands from the controller of the HDD. Generally, the IC including the controller, which is also an encapsulated IC, is mounted on a control circuit printed-circuit board (PCB) secured to the outside of the DE of the HDD. The AE module also includes a register. The controller controls the AE module by storing control data in the register. For example, the AE module selects the magnetic-recording head of a designated head-slider, and converts, for example, the write current value, or alternatively, the sense current value, in response to commands from the controller. In addition, a power supply to a heater that is disposed on the head-slider is another function provided in circuits of the AE module.

"The clearance between the magnetic-recording head flying in proximity with a recording surface of the magnetic-recording disk and the magnetic-recording disk, referred to herein as the 'fly-height,' may be reduced in order to increase the areal recording density (AD) on the magnetic-recording disk of the HDD. Therefore, a technique for adjusting the fly-height has been used in the art of magnetic-recording in HDDs. In this technique, a heater is disposed on the head-slider; and, the fly-height is adjusted by heating the magnetic-recording head with the heater. As described herein, this technique is referred to as thermal fly-height control (TFC). TFC supplies current to the heater to generate heat; and, the magnetic-recording head protrudes outwards by thermal expansion. Thus, the fly-height between the magnetic-recording disk and the magnetic-recording head may be reduced.

"To increase AD, the fly-height between the magnetic-recording head of the head-slider and the magnetic-recording disk is made as small as possible. The current fly-height is approximately several nanometers (nm). When the design margins in the structure of the HDD are considered, the fly-height is at a value close to the limit. Therefore, engineers and scientists engaged in HDD manufacturing and development are interested in finding ways to increase AD by more accurately controlling the fly-height."

As a supplement to the background information on this patent, VerticalNews correspondents also obtained the inventors' summary information for this patent: "Embodiments of the present invention include a magnetic-recording head with a first thermal fly-height control (TFC) element and an embedded contact sensor element (ECSE) configurable as a second TFC element. The magnetic-recording head includes a write element, a read element, a first heater element, and an ECSE. The write element is configured for writing data to a magnetic-recording disk. The read element is configured for reading back data from the magnetic-recording disk. The first heater element is configured as a first TFC element to coarsely adjust a fly-height of the magnetic-recording head with respect to the magnetic-recording disk. The ECSE is configured to detect a contact with the magnetic-recording disk, and configured to function as a second heater element that is configured as a second TFC element to finely adjust the fly-height. The first heater element is configured with a first stroke-length larger than a second stroke-length of the second heater element for adjusting the fly-height. Embodiments of the present invention also include an arm-electronics (AE) module for the magnetic-recording head and a hard-disk drive (HDD) including the magnetic-recording head and the AE module."

For additional information on this patent, see: Kurita, Masayuki; Shiramatsu, Toshiya; Kuroki, Kenji; Shimizu, Yuki. Magnetic-Recording Head with First Thermal Fly-Height Control Element and Embedded Contact Sensor Element Configurable as Second Thermal Fly-Height Control Element. U.S. Patent Number 8773801, filed October 21, 2010, and published online on July 8, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8773801.PN.&OS=PN/8773801RS=PN/8773801

Keywords for this news article include: Electronics, HGST Netherlands B.V.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Electronics Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters