News Column

Patent Issued for Expanded Heat Sink for Electronic Displays

July 23, 2014



By a News Reporter-Staff News Editor at Electronics Newsweekly -- Manufacturing Resources International, Inc. (Alpharetta, GA) has been issued patent number 8773633, according to news reporting originating out of Alexandria, Virginia, by VerticalNews editors.

The patent's inventors are Dunn, William (Alpharetta, GA); Bedell, Ware (Cummings, GA); Hubbard, Tim (Alpharetta, GA).

This patent was filed on October 15, 2010 and was published online on July 8, 2014.

From the background information supplied by the inventors, news correspondents obtained the following quote: "Heat transfer systems for electronic displays generally attempt to remove heat from the heat-generating electronic components through as many sidewalls of the display as possible. In order to do this, some systems of the past have relied primarily on fans for moving air past the components to be cooled and out of the display. Components which are known for producing a large amount of heat may have a `heat sink` attached to the component which provides an expanded surface area so that heat may be transferred away from the component. However, these heat sinks are traditionally attached to the component itself and are limited by the size and shape of the component itself. While such heat transfer systems have enjoyed a measure of success in the past, improvements to displays require even greater cooling capabilities.

"Modern displays have become extremely bright, with some backlights producing 1,000-2,000 nits or more. Sometimes, these illumination levels are necessary because the display is being used outdoors, or in other relatively bright areas where the display illumination must compete with other ambient light. In order to produce this level of brightness, illumination devices (ex. LED, organic LED, light emitting polymer (LEP), organic electro luminescence (OEL), and plasma assemblies) may produce a relatively large amount of heat. Further, the illumination devices require a relatively large amount of power in order to generate the required brightness level. This large amount of power is typically supplied through one or more power supplies/modules for the display. These power supplies may also become a significant source of heat for the display.

"Further, displays of the past were primarily designed for operation near room temperature. However, it is now desirable to have displays which are capable of withstanding large surrounding environmental temperature variations. For example, some displays may be designed to operate at temperatures as low as -22 F and as high as 113 F or higher. When surrounding temperatures rise, the cooling of the internal display components can become even more difficult.

"Still further, in some situations radiative heat transfer from the sun through a front display surface can also become a source of heat. In some locations 200 Watts or more through such a front display surface is common. Furthermore, the market is demanding larger screen sizes for displays. With increased electronic display screen size and corresponding front display surfaces, more heat will be generated and more heat will be transmitted into the displays."

Supplementing the background information on this patent, VerticalNews reporters also obtained the inventors' summary information for this patent: "Exemplary embodiments relate to a system for cooling the various heat-producing components of an electronic display. The various embodiments herein provide a cooling system for transferring heat away from power module(s), central processing units (CPU), hard drives, backlights, and electronic image assemblies, either alone or in combination. One or more of the heat-producing components are preferably in thermal communication with a plurality of thermally conductive ribs where the ribs are placed in the path of cooling air. The heat from the heat-producing components is preferably transferred to and distributed throughout the ribs and removed by the cooling air.

"In at least one embodiment, power modules and a display backlight may be placed in thermal communication with the ribs. In this way, a single path of cooling air can be used to cool two of the most heat-producing components of a typical electronic display (for this embodiment, an LCD display). For example, and not by way of limitation, LED arrays are commonly used as the illumination devices for LCD displays. It has been found that the optical properties of LEDs (and other illumination devices) can vary depending on temperature. Thus, when an LED is exposed to room temperatures, it may output light with a certain luminance, wavelength, and/or color temperature. However, when the same LED is exposed to high temperatures, the luminance, wavelength, color temperature, and other properties can vary. Thus, when a temperature variation occurs across an LED backlight (some areas are at a higher temperature than others) there can be optical inconsistencies across the backlight which can be visible to the observer. By using the embodiments herein, heat buildup can be evenly distributed across the thermally conductive ribs and removed from the display. This can prevent any potential `hot spots` in the backlight which may become visible to the observer because of a change in optical properties of the illumination devices (sometimes LEDs).

"The ribs may provide an isolated chamber from the rest of the display so that ambient air can be ingested and used to cool the ribs. This is beneficial for situations where the display is being used in an outdoor environment and the ingested air may contain contaminates (pollen, dirt, dust, water, smoke, etc.) that would damage the sensitive electronic components of the display.

"If a backlight is used with the particular display application, a backlight with front and rear sides may be used where the front side contains the illumination devices and the rear side contains a thermally conductive surface for dissipating the heat from the illumination devices. The thermally conductive rear surface may be in thermal communication with the ribs so that heat from the backlight can be transferred to the ribs and out of the display. Ideally, there should be a low level of thermal resistance between the front and rear sides of the backlight. An exemplary embodiment may utilize a metal core PCB with LEDs on the front side and a metallic surface on the rear side.

"Exemplary embodiments may include an additional closed loop of circulating gas which may travel across the front of the electronic image assembly, through a heat exchanger, and return to the front of the electronic image assembly. An inlet aperture which accepts cooling gas for the ribs can also accept cooling gas which may travel through the heat exchanger in order to cool the circulating gas.

"The foregoing and other features and advantages will be apparent from the following more detailed description of the particular embodiments of the invention, as illustrated in the accompanying drawings."

For the URL and additional information on this patent, see: Dunn, William; Bedell, Ware; Hubbard, Tim. Expanded Heat Sink for Electronic Displays. U.S. Patent Number 8773633, filed October 15, 2010, and published online on July 8, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8773633.PN.&OS=PN/8773633RS=PN/8773633

Keywords for this news article include: Electronic Components, Manufacturing Resources International Inc.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Electronics Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters