News Column

Patent Application Titled "Use of Sdf-1 to Mitigate Scar Formation" Published Online

July 21, 2014



By a News Reporter-Staff News Editor at Diabetes Week -- According to news reporting originating from Washington, D.C., by NewsRx journalists, a patent application by the inventors Penn, Marc S. (Beachwood, OH); Kiedrowski, Matthew (Cleveland, OH); Aras, Rahul (Broadview Heights, OH); Pastore, Joseph (Mentor, OH), filed on February 7, 2014, was made available online on July 10, 2014 (see also Juventas Therapeutics, Inc.).

The assignee for this patent application is Juventas Therapeutics, Inc.

Reporters obtained the following quote from the background information supplied by the inventors: "Wounds (i.e., lacerations or openings) in mammalian tissue result in tissue disruption and coagulation of the microvasculature at the wound face. Repair of such tissue represents an orderly, controlled cellular response to injury. All soft tissue wounds, regardless of size heal in a similar manner. Tissue growth and repair are biologic systems wherein cellular proliferation and angiogenesis occur in the presence of an oxygen gradient. The sequential morphological and structural changes which occur during tissue repair have been characterized in great detail and have in some instances been quantified (Hunt, T. K., et al., 'Coagulation and macrophage stimulation of angiogenesis and wound healing,' in The Surgical Wound, pp. 1-18, ed. F. Dineen & G. Hildrick-Smith (Lea & Febiger, Philadelphia: 1981)].

"The cellular morphology consists of three distinct zones. The central avascular wound space is oxygen deficient, acidotic and hypercarbic, and has high lactate levels. Adjacent to the wound space is a gradient zone of local anemia (ischemia) which is populated by dividing fibroblasts. Behind the leading zone is an area of active collagen synthesis characterized by mature fibroblasts and numerous newly-formed capillaries (i.e., neovascularization). While this new blood vessel growth (angiogenesis) is necessary for the healing of wound tissue, angiogenic agents generally are unable to fulfill the long-felt need of providing the additional biosynthetic effects of tissue repair. Despite the need for more rapid healing of wounds (i.e., severe burns, surgical incisions, lacerations and other trauma), to date there has been only limited success in accelerating wound healing with pharmacological agents."

In addition to obtaining background information on this patent application, NewsRx editors also obtained the inventors' summary information for this patent application: "The present invention relates to methods and composition of treating and/or promoting wound healing in a subject. In the method, SDF-1 is administered directly to the wound or cells proximate the wound at an amount effective to promote wound healing. The wound can include any injury to any portion of the body of a subject. Examples of wounds that can be treated by the method include acute conditions or wounds; such as thermal burns, chemical burns, radiation burns, burns caused by excess exposure to ultraviolet radiation (e.g., sunburn); damage to bodily tissues, such as the perineum as a result of labor and childbirth; injuries sustained during medical procedures, such as episiotomies, trauma-induced injuries including cuts, incisions, excoriations; injuries sustained from accidents; post-surgical injuries, as well as chronic conditions; such as pressure sores, bedsores, conditions related to diabetes and poor circulation, and all types of acne. In addition, the wound can include dermatitis, such as impetigo, intertrigo, folliculitis and eczema, wounds following dental surgery; periodontal disease; wounds following trauma; and tumor associated wounds.

"In an aspect of the invention, an amount of SDF-1 administered to the wound or cells proximate the wound can be an amount effective to promote or accelerate wound closure and wound healing, mitigate scar formation of and/or around the wound, inhibit apoptosis of cells surrounding or proximate the wound, and/or facilitate revascularization of the wounded tissue. The SDF-1 can be administered to cells proximate the wound that include SDF-1 receptors that are up-regulated as a result of tissue injury and/or trauma. In an aspect of the invention, the SDF-1 receptor can comprise CXCR4 and/or CXCR7, and the SDF-1 can be administered at an amount effect to increase Akt-phosphorylation of the cells.

"In another aspect of the invention, the SDF-1 can be administered by expressing SDF-1 in cells proximate the wound and/or providing a pharmaceutical composition to the wound which includes SDF-1. The SDF-1 can be expressed from the cells proximate the wound by genetically modifying the cells by at least one of a vector, plasmid DNA, electroporation, and nanoparticles to express SDF-1.

"The present invention also relates to methods and composition of inhibiting scar formation during wound healing in a subject. In the method, SDF-1 is administered directly to the wound or cells proximate the wound at an amount effective to mitigate scar formation in and/or around the wound. The wound can include any injury to any portion of the body of a subject. Examples of wound that can be treated by the method include acute conditions or wounds; such as thermal burns, chemical burns, radiation burns, burns caused by excess exposure to ultraviolet radiation (e.g., sunburn); damage to bodily tissues, such as the perineum as a result of labor and childbirth; injuries sustained during medical procedures, such as episiotomies, trauma-induced injuries including cuts, incisions, excoriations; injuries sustained from accidents; post-surgical injuries, as well as chronic conditions; such as pressure sores, bedsores, conditions related to diabetes and poor circulation, and all types of acne. In addition, the wound can include dermatitis such as impetigo, intertrigo, folliculitis and eczema, wounds following dental surgery; periodontal disease; wounds following trauma; and tumor associated wounds.

"In an aspect of the invention, an amount of SDF-1 administered to the wound or cells proximate the wound can be an amount effective to promote or accelerate wound closure and wound healing, mitigate scar fibrosis of the tissue of and/or around the wound, inhibit apoptosis of cells surrounding or proximate the wound, and/or facilitate revascularization of the wounded tissue. The SDF-1 can be administered to cells proximate the wound that include SDF-1 receptors that are up-regulated as a result of tissue injury and/or trauma. In an aspect of the invention, the SDF-1 receptor can comprise CXCR4 and/or CXCR7, and the SDF-1 can be administered at an amount effect to increase Akt-phosphorylation of the cells.

"In another aspect of the invention, the SDF-1 can be administered by expressing SDF-1 in cells proximate the wound and/or providing a pharmaceutical composition to the wound which includes SDF-1. The SDF-1 can be expressed from the cells proximate the wound by genetically modifying the cells by at least one of a vector, plasmid DNA, electroporation, and nanoparticles to express SDF-1.

"The present invention further relates to methods and composition of promoting or accelerating wound closure in a subject. In the method, SDF-1 is administered directly to the wound or cells proximate the wound at an amount effective to promote wound closure. The wound can include any injury to any portion of the body of a subject. Examples of wound that can be treated by the method include acute conditions or wounds; such as thermal burns, chemical burns, radiation burns, burns caused by excess exposure to ultraviolet radiation (e.g., sunburn); damage to bodily tissues, such as the perineum as a result of labor and childbirth; injuries sustained during medical procedures, such as episiotomies, trauma-induced injuries including cuts, incisions, excoriations; injuries sustained from accidents; post-surgical injuries, as well as chronic conditions; such as pressure sores, bedsores, conditions related to diabetes and poor circulation, and all types of acne. In addition, the wound can include dermatitis such as impetigo, intertrigo, folliculitis and eczema, wounds following dental surgery; periodontal disease; wounds following trauma; and tumor associated wounds.

"In an aspect of the invention, an amount of SDF-1 administered to the wound or cells proximate the wound can be an amount effective to promote or accelerate wound closure and wound healing, mitigate scar formation of and/or around the wound, inhibit apoptosis of cells surrounding or proximate the wound, and/or facilitate revascularization of the wounded tissue. The SDF-1 can be administered to cells proximate the wound that include SDF-1 receptors that are up-regulated as a result of tissue injury and/or trauma. In an aspect of the invention, the SDF-1 receptor can comprise CXCR4 and/or CXCR7, and the SDF-1 can be administered at an amount effect to increase Akt-phosphorylation of the cells.

"In another aspect of the invention, the SDF-1 can be administered by expressing SDF-1 in cells proximate the wound and/or providing a pharmaceutical composition to the wound which includes SDF-1. The SDF-1 can be expressed from the cells proximate the wound by genetically modifying the cells by at least one of a vector, plasmid DNA, electroporation, and nanoparticles to express SDF-1.

"The present invention still further relates to a topical and/or local formulation for promoting wound healing in subject. The formulation can include an amount of SDF-1 effective to promote wound closure and inhibit scarring of the wound when the formulation is administered to the wound.

"The wound can include any injury to any portion of the body of a subject. Examples of wound that can be treated by the method include acute conditions or wounds; such as thermal burns, chemical burns, radiation burns, burns caused by excess exposure to ultraviolet radiation (e.g., sunburn); damage to bodily tissues, such as the perineum as a result of labor and childbirth; injuries sustained during medical procedures, such as episiotomies, trauma-induced injuries including cuts, incisions, excoriations; injuries sustained from accidents; post-surgical injuries, as well as chronic conditions; such as pressure sores, bedsores, conditions related to diabetes and poor circulation, and all types of acne. In addition, the wound can include dermatitis such as impetigo, intertrigo, folliculitis and eczema, wounds following dental surgery; periodontal disease; wounds following trauma; and tumor associated wounds.

"The amount of SDF-1 in the wound can also be an amount effective to promote or accelerate wound healing, mitigate scar formation of and/or around the wound, inhibit apoptosis of cells surrounding or proximate the wound, and/or facilitate revascularization of the wounded tissue. In an aspect of the invention, the SDF-1 can be in the form of protein or plasmid that when administered to a cell proximate the wound promotes expression of SDF-1 from the cells.

BRIEF DESCRIPTION OF THE DRAWINGS

"The foregoing and other features of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading the following description with reference to the accompanying drawings.

"FIG. 1 illustrates photographs showing that SDF-1 releasing scaffolds accelerate wound healing.

"FIG. 2 illustrates plots showing the % Healing over a period days for porcine wounds treated with SDF-1 protein scaffold, SDF-1 plasma scaffold, Saline scaffold, and no scaffold."

For more information, see this patent application: Penn, Marc S.; Kiedrowski, Matthew; Aras, Rahul; Pastore, Joseph. Use of Sdf-1 to Mitigate Scar Formation. Filed February 7, 2014 and posted July 10, 2014. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=3503&p=71&f=G&l=50&d=PG01&S1=20140703.PD.&OS=PD/20140703&RS=PD/20140703

Keywords for this news article include: Tissue Engineering, Biomedical Engineering, Biomedicine, Sunburn, Surgery, Diabetes, Genetics, Apoptosis, Dentistry, Dermatitis, Dermatology, Angiogenesis, Folliculitis, Nanoparticle, Chemical Burn, Skin Diseases, Bioengineering, Mouth Diseases, Nanotechnology, Pressure Ulcer, Periodontal Diseases, Emerging Technologies.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Diabetes Week


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters