News Column

Patent Application Titled "Systems and Methods for Continuous Adjustment of Reference Signal to Control Chip" Published Online

July 23, 2014



By a News Reporter-Staff News Editor at Electronics Newsweekly -- According to news reporting originating from Washington, D.C., by VerticalNews journalists, a patent application by the inventor Valois, Charles (Westford, MA), filed on December 28, 2012, was made available online on July 10, 2014.

The assignee for this patent application is I2systems Inc.

Reporters obtained the following quote from the background information supplied by the inventors: "The intensity level of a light emitting diode (LED) may be reduced using duty-cycle adjustment (e.g., pulse width modulation or 'PWM') as an on/off signal to an on/off input of an LED driver driving the LED. Varying the duty cycle of the signal being input to the on/off input of the LED driver may turn the LED driver on/off for a percentage of time, thus lower the average power provided to the LED."

In addition to obtaining background information on this patent application, VerticalNews editors also obtained the inventor's summary information for this patent application: "The present disclosure is directed to systems and methods for managing the average power supplied to a device. In some aspects, the system may facilitate continuous adjustment of power provided to a device by providing a reference signal having a slope to a control pin (e.g., current control pin) of a control chip (e.g., power regulator or LED driver). Providing a reference signal with a slope (e.g., a triangle or a sinusoidal wave) can increase the control range of the control chip and improve control chip performance. For example, providing a relatively slow changing signal to an LED driver may facilitate smooth control of the current provided to an LED. Smooth control of the current may facilitate controlling surge currents on supply wires or reduce the frequency of harmonics generated by the wires.

"In some embodiments, the system includes a power regulator that provides power to a device. The power regulator can include a first output that is coupled to a power input of the device, and be configured to control one of a voltage or a current provided to the device. The system can include a wave shape generator having an output coupled to a control input of the power regulator. The wave shape generator can be configured to generate a wave with a wave shape having a slope. The wave may also include a first portion that is above a minimum threshold that turns on the power regulator. The power regulator can control an intensity level of the device based on the wave shape and the first portion of the wave.

"In some embodiments, the wave includes a second portion that is below the minimum threshold to turn off the power regulator. The power regulator can be configured to reduce the intensity level of the device responsive to the second portion of the wave that is below the minimum threshold to turn off the power regulator. In some embodiments, the power regulator, responsive to the second portion of the wave, can stop sending current to the device.

"In some embodiments, the wave shape includes a voltage changing slower than the rise-time of the wave. In some embodiments, at least one of the slope, first portion, and second portion is predetermined based on a desired intensity level.

"In some embodiments, the control input of the power regulator includes a current control input. In some embodiments, the system includes a current feedback output coupled to the control input of the power regulator, where a signal of the current feedback output is summed with the wave.

"In some embodiments, the power regulator includes a light emitting diode (LED) driver, the device includes an LED, and the intensity level includes a dimming level of the LED. In some embodiments, the device includes an electric motor.

"In some embodiments, the wave shape generator is configured to generate at least one of a triangle wave and a sine wave. In some embodiments, the wave shape generator includes a digital-to-analog convertor configured to generate the wave shape with multiple steps.

"In some embodiments, the wave shape generator can include an interface. The wave shape generator can be configured to receive a wave from a wave source and condition the received wave such that the conditioned wave includes a slope. In some embodiments, the interface is configured to round at least one edge of the received wave. The interface can include at least one of: a transistor push-pull with a resistor and capacitor; a transistor push up with a resistor pull-down with a resistor and capacitor; a constant-current source and constant-current sink with a capacitor; a constant-current source with a resistor pull-down with a capacitor; a constant-current sink with a resistor pull-up with a capacitor; an inductor; and a capacitor.

"In some embodiments, the system is configured to control the intensity level of the device from 1% to 100%. In some embodiments, the system is configured to control the intensity level of the device from 0.1% to 100%.

"In some embodiments, the system includes multiple power regulators and devices. For example, a first power regulator may be coupled to a first device and a second power regulator may be coupled to a second device. The output of the wave shape generator may be coupled to the control input of the first power regulator and the second power regulator. In some embodiments, a third device is coupled to the first device and first power regulator in series, and a fourth device is coupled to the second device and the second power regulator in series.

"In some embodiments, the system includes a direct current (DC) source coupled to the control input. The DC source can be configured to move the second portion of the wave above the minimum threshold

"In one aspect, the present disclosure is directed to a system for managing a light emitting diode (LED). In some embodiments, the system includes a wave shape generator in communication with a dimming controller. The wave shape generator can receive an indication of a desired dimming level for the LED. The wave shape generator may receive the desired dimming level from the dimming controller. Responsive to the indication, the system can generate a wave. The wave can include a wave shape with a slope, and at a least a portion of the wave can be above a threshold. The system can transmit the wave to an LED driver via a current control input of the LED driver. The wave can control a dimming level of the LED.

"In one aspect, the present disclosure is directed to a method for managing an LED. The method can include a dimming controller receiving an indication of a desired dimming level for the LED. The method can include generating a wave responsive to the indication. The wave can have a wave shape with a slope, and at least a portion of the wave can be above a threshold to turn on the LED driver. The method can include transmitting the wave to an LED driver via a current control input. The wave can control a dimming level of the LED.

BRIEF DESCRIPTION OF THE DRAWINGS

"The foregoing and other objects, aspects, features, and advantages of the present invention will become more apparent and better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:

"FIG. 1 is a block diagram that depicts an embodiment of a system for providing continuous adjustment of a reference signal to a control chip;

"FIG. 2A is an illustrative example of an circuit diagram in accordance with an embodiment for providing continuous adjustment of a reference signal to a control chip;

"FIG. 2B is an illustrative example of block diagram in accordance with an embodiment for providing continuous adjustment of a reference signal to a control chip;

"FIG. 3A is an illustrative example of an embodiment of a triangle wave used to provide continuous adjustment of a reference signal to a control chip;

"FIG. 3B is an illustrative example of an embodiment of a source wave and corresponding conditioned wave used to provide continuous adjustment of a reference signal to a control chip;

"FIG. 4 is a flow chart illustrating steps of a method for providing continuous adjustment of a reference signal to a control chip.

"The features and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like reference characters identify corresponding elements throughout."

For more information, see this patent application: Valois, Charles. Systems and Methods for Continuous Adjustment of Reference Signal to Control Chip. Filed December 28, 2012 and posted July 10, 2014. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=5795&p=116&f=G&l=50&d=PG01&S1=20140703.PD.&OS=PD/20140703&RS=PD/20140703

Keywords for this news article include: Electronics, I2systems Inc, Light-emitting Diode.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Electronics Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters