News Column

Patent Application Titled "Apparatus and Method for Reducing Examination Time in Molecular Breast Imaging" Published Online

July 25, 2014



By a News Reporter-Staff News Editor at Health & Medicine Week -- According to news reporting originating from Washington, D.C., by NewsRx journalists, a patent application by the inventors Sachs, Jonathan (Haifa, IL); Hefetz, Yaron (Kibbutz Alonim, IL), filed on December 27, 2012, was made available online on July 10, 2014 (see also General Electric Company).

The assignee for this patent application is General Electric Company.

Reporters obtained the following quote from the background information supplied by the inventors: "The present invention relates generally to nuclear medicine imaging, and more particularly to molecular breast imaging using nuclear medicine.

"U.S. Pat. No. 8,115,171, assigned to General Electric Company and titled 'Gamma Camera for Performing Nuclear Mammography Imaging' (herein incorporated by reference), describes a system for performing 'molecular breast imaging', or 'MBI'. MBI typically involves the injection of a radiotracer into a patient wherein the radiotracer is carried by the bloodstream throughout the patient's body while emitting high-energy gamma photons which can be detected by a detection and imaging system, such as the system of CZT-based detectors described in the aforementioned patent. Nuclear imaging systems (also called molecular imaging systems) such as described in the aforementioned patent work by detecting the distribution of gamma ray emanations throughout the patient's body or from within a specific region of interest (ROI). Areas where the gamma ray emanations are remarkably higher than would be the case for normal tissue at that area indicate an increased amount of uptake of the radiotracer in that tissue, possibly indicating cancerous tissue, while areas where the gamma ray emanations are remarkably lower than would be the case for normal tissue at that area indicate a decreased amount of uptake of radiotracer in that tissue area, possibly indicating necrotic or dead tissue. Thus, MBI utilizes nuclear/molecular imaging focused on the breast and surrounding ROIs (e.g., the axillary lymph nodes), primarily to detect or screen for breast cancer.

"FIG. 1 illustrates the typical workflow involved in conventional MBI, which is very similar to the workflow involved in X-ray based mammography. In FIG. 1A, a patient's breast (in this case, the patient's right breast 16) is positioned between an upper gamma detector 12 and a lower gamma detector 14 (or, the upper and lower detectors 12/14 are positioned so as to be adjacently above and below the breast, respectively) and the detectors 12/14 are moved toward each other so as to immobilize and/or lightly compress the selected breast. In FIG. 1A, the detectors are oriented essentially directly above and below the breast, in what is known in the art as the cranio-caudal (CC) orientation. Once the detectors are in place in this orientation for sufficient time to gather enough gamma photons for subsequent image reconstruction, the next step in the workflow is to move the detectors apart from each other and place them in the mediolateral-oblique (MLO) orientation, as shown in FIG. 1B. Here again, the detectors 12/14 may immobilize and/or lightly compress the breast and remain in position long enough to receive sufficient gamma photon counts. Then, detectors 12/14 are moved apart and the patient and/or detectors are positioned such that the other breast 18 can be imaged, such as in the CC orientation as illustrated in FIG. 1C. The final step is then to reorient the detectors to the MLO orientation, as shown in FIG. 1D. Those skilled in the art will recognize that other sequences or workflows other than that illustrated in FIGS. 1A-1D may also be performed. For example, both CC orientations may be done first, and then the two MLO orientations, or any combination of FIGS. 1A-1D.

"In the conventional prior art MBI workflows exemplified by FIG. 1, and as described in the aforementioned patent, only one pair of detectors is used. This is similar to the systems utilized by conventional X-ray based mammography, wherein one pair of paddles/detectors is used to compress and image one breast at a time. However, one drawback for MBI workflows in particular is that it can take quite a long time at each of the four positions shown in FIGS. 1A-1D to gather sufficient gamma photon counts to produce a suitable image. (Typically it takes much longer for a pair of gamma detectors to produce a suitable image than it takes for a pair of X-ray paddles/detectors to do so.) In addition to just the amount of time it takes, there is also the amount of discomfort that the patient must endure while the full workflow is completed. It would be desirable, therefore, to provide an improved MBI system and workflow which is quicker so as to reduce the amount of time spent and discomfort experienced by patients undergoing an MBI imaging procedure."

In addition to obtaining background information on this patent application, NewsRx editors also obtained the inventors' summary information for this patent application: "In one set of embodiments of the present invention, there is provided a nuclear medicine mammography system for conducting examinations of both breasts of a patient, comprising first and second pairs of generally opposed articulatable gamma photon detectors, wherein each pair of detectors can be arranged to image a respective breast independently from the other pair of detectors, and wherein both breasts can be imaged concurrently. Each pair of detectors can be arranged in at least two imaging orientations, such as cranio-caudal and mediolateral-oblique. The system may be configured to provide a first configuration in which each of the detector pairs is oriented in a respective first orientation, and a second configuration in which each of the detector pairs is oriented in a respective second orientation that is different from the respective first orientation. In each of the first and second configurations, both of the detector pairs may oriented in the same orientation or in different orientations. For example, in the first configuration both detector pairs may be oriented in a cranio-caudal orientation, and in the second configuration both detector pairs may be oriented in a mediolateral-oblique orientation. Alternatively, in the first configuration one detector pair may be oriented in a cranio-caudal orientation and the other detector pair may be oriented in a mediolateral-oblique orientation, and in the second configuration the one detector pair may be oriented in a mediolateral-oblique orientation and the other detector pair may be oriented in a cranio-caudal orientation.

"In another set of embodiments of the present invention, there is provided a method for conducting examinations of both breasts of a patient, comprising the steps of: (a) providing a nuclear medicine mammography system having first and second pairs of generally opposed articulatable gamma photon detectors, wherein each pair of detectors can be arranged to image a respective breast independently from the other pair of detectors; (b) configuring the system in a first configuration in which each detector pair is oriented in a respective first orientation with respect to the patient; conducting a first imaging of both breasts of the patient by concurrently operating both detector pairs; (d) configuring the system in a second configuration in which each detector pair is oriented in a respective second orientation with respect to the patient that is different from the respective first orientation; and (e) conducting a second imaging of both breasts of the patient by concurrently operating both detector pairs. Each pair of detectors can be arranged in at least two imaging orientations, such as cranio-caudal and mediolateral-oblique. Methods according to this set of embodiments may further comprise the step of: (f) prior to each of steps and (e), positioning the patient with each breast positioned between a respective pair of detectors. In each of the first and second configurations, both of the detector pairs may be oriented in the same orientation or in different orientations.

"In yet another set of embodiments of the present invention, there is provided a nuclear medicine mammography system for conducting examinations of both breasts of a patient, comprising first and second pairs of generally opposed articulatable gamma photon detectors, wherein each pair of detectors can be arranged to image a respective breast independently from the other pair of detectors. The first detector pair is dedicatedly oriented in a first orientation and the second detector pair is dedicatedly oriented in a second orientation that is different from the first orientation. The system is configured to provide a first configuration in which the first detector pair can be arranged to image the right breast and the second detector pair can be arranged to image the left breast, and a second configuration in which the first detector pair can be arranged to image the left breast and the second detector pair can be arranged to image the right breast, wherein in each of the first and second configurations both breasts can be imaged concurrently. One detector pair can be dedicated to a generally cranio-caudal, mediolateral-oblique or mediolateral orientation, while the other detector pair is dedicated to a different orientation. Each detector pair is oriented in a respective orientation in both the first and second configurations. The system may further comprise first and second platens operably connected to the first and second detector pairs, respectively, and a turntable operably connecting the first and said platens to a gantry.

"In an additional set of embodiments of the present invention, there is provided a method for conducting examinations of both breasts of a patient, comprising the steps of: (a) providing a nuclear medicine mammography system having first and second pairs of generally opposed articulatable gamma photon detectors operably connected to respective first and second platens, and a turntable operably connecting said first and second platens to a gantry; (b) configuring the system in a first configuration in which the first detector pair is arranged to image the right breast and the second detector pair is arranged to image the left breast; conducting a first imaging of both breasts of the patient by concurrently operating both detector pairs; (d) configuring the system in a second configuration in which the first detector pair is arranged to image the left breast and the second detector pair is arranged to image the right breast; and (e) conducting a second imaging of both breasts of the patient by concurrently operating both detector pairs. The method may further comprise the step, prior to each of steps and (e), of (f) positioning the system and/or the patient such that each breast is positioned between a respective pair of detectors. One or both of the configuring steps may be performed by rotating or moving the turntable so as to place each platen and its associated detector pair in position for immobilizing and imaging a respective breast. The first detector pair is dedicatedly oriented in a first orientation and the second detector pair is dedicatedly oriented in a second orientation that is different from said first orientation. For example, one detector pair may be oriented in a cranio-caudal orientation and the other may be oriented in a mediolateral or mediolateral-oblique orientation. The configuring steps may include articulating one or both of the detectors in each detector pair so as to immobilize each respective breast for imaging.

"In a further set of embodiments of the present invention, there is provided a system and method according to one or more of the above embodiments in which a third pair of generally opposed gamma photon detectors is provided in addition to the aforementioned two detector pairs. The third pair of detectors may have a length greater than that of either of the first and second pairs, so as to be configured to image both breasts concurrently, such as in a generally cranial-caudal orientation.

"In yet a further set of embodiments of the present invention, there is provided a system and method according to one or more of the above embodiments in which one or two gamma photon detectors is provided in addition to the aforementioned two or three detector pairs, for imaging the lymph nodes. Such imaging of the lymph nodes may be performed at the same time that both breasts are being imaged concurrently.

BRIEF DESCRIPTION OF THE DRAWINGS

"FIG. 1 is a schematic representation of a typical breast imaging procedure according to the prior art.

"FIG. 2 is a schematic representation of a breast imaging procedure according to a first embodiment of the present invention.

"FIG. 3 is a schematic representation of a breast imaging procedure according to a second embodiment of the present invention.

"FIG. 4 is a schematic representation of a breast imaging procedure according to a third embodiment of the present invention.

"FIG. 5 is a schematic representation of a breast imaging procedure according to a fourth embodiment of the present invention.

"FIG. 6 is a schematic representation of a breast imaging procedure according to a fifth embodiment of the present invention.

"FIG. 7 is a schematic representation of a breast imaging procedure according to a sixth embodiment of the present invention.

"FIG. 8 is a schematic representation of a platen supporting two detectors and illustrating various degrees of freedom according to an embodiment of the present invention.

"FIG. 9 is a schematic representation of two detectors illustrating their respective degrees of freedom according to an embodiment of the present invention.

"FIG. 10 is a schematic representation of two platens each supporting two detectors according to an embodiment of the present invention.

"FIG. 11 is a block diagram of a nuclear medicine imaging system according to an embodiment of the present invention.

"FIG. 12 is a block diagram of a nuclear medicine imaging system according to another embodiment of the present invention.

"FIG. 13 is a block diagram of a nuclear medicine imaging system according to yet another embodiment of the present invention.

"FIG. 14 is a flowchart showing the steps of a method according to one or more embodiments of the present invention.

"FIG. 15 is a flowchart showing the steps of another method according to one or more embodiments of the present invention.

"FIG. 16 is a flowchart showing the steps of yet another method according to one or more embodiments of the present invention.

"FIG. 17 is a flowchart showing the steps of still another method according to one or more embodiments of the present invention."

For more information, see this patent application: Sachs, Jonathan; Hefetz, Yaron. Apparatus and Method for Reducing Examination Time in Molecular Breast Imaging. Filed December 27, 2012 and posted July 10, 2014. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=4175&p=84&f=G&l=50&d=PG01&S1=20140703.PD.&OS=PD/20140703&RS=PD/20140703

Keywords for this news article include: Lymph Nodes, Nanotechnology, Molecular Imaging, Emerging Technologies, Breast Cancer Screening, General Electric Company, Hemic and Immune Systems.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Health & Medicine Week


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters