News Column

New Findings on Integrative Biology from Cornell University Summarized (A serial micropipette microfluidic device with applications to cancer cell...

July 22, 2014



New Findings on Integrative Biology from Cornell University Summarized (A serial micropipette microfluidic device with applications to cancer cell repeated deformation studies)

By a News Reporter-Staff News Editor at Cancer Weekly -- Current study results on Life Science Research have been published. According to news reporting originating from Ithaca, New York, by NewsRx correspondents, research stated, "Cells are complex viscoelastic materials that are frequently in deformed morphological states, particularly during the cancer invasion process. The ability to study cell mechanical deformability in an accessible way can be enabling in many areas of research where biomechanics is important, from cancer metastasis to immune response to stem cell differentiation."

Our news editors obtained a quote from the research from Cornell University, "Furthermore, phenomena in biology are frequently exhibited in high multiplicity. For instance, during metastasis, cells undergoing non-proteolytic invasion squeeze through a multitude of physiological barriers, including many small pores in the dense extracellular matrix (ECM) of the tumor stroma. Therefore, it is important to perform multiple measurements of the same property even for the same cell in order to fully appreciate its dynamics and variability, especially in the high recurrence regime. We have created a simple and minimalistic micropipette system with automated operational procedures that can sample the deformation and relaxation dynamics of single-cells serially and in a parallel manner. We demonstrated its ability to elucidate the impact of an initial cell deformation event on subsequent deformations for untreated and paclitaxel treated MDA-MB-231 metastatic breast cancer cells, and we examined contributions from the cell nucleus during whole-cell micropipette experiments. Finally we developed an empirical model that characterizes the serial factor, which describes the reduction in cost for cell deformations across sequential constrictions."

According to the news editors, the research concluded: "We performed experiments using spatial, temporal, and force scales that match physiological and biomechanical processes, thus potentially enabling a qualitatively more pertinent representation of the functional attributes of cell deformability."

For more information on this research see: A serial micropipette microfluidic device with applications to cancer cell repeated deformation studies. Integrative Biology, 2013;5(11):1374-84. (Royal Society of Chemistry - www.rsc.org/; Integrative Biology - pubs.rsc.org/en/journals/journalissues/ib)

The news editors report that additional information may be obtained by contacting M. Mak, Biomedical Engineering Department, Cornell University, Ithaca, NY 14853, United States (see also Life Science Research).

Keywords for this news article include: Ithaca, Cancer, New York, Oncology, United States, Life Science Research, North and Central America.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Cancer Weekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters