News Column

New Alkenes Study Results from I-Shou University Described (Key operating parameters affecting photocatalytic activity of visible-light-induced...

July 22, 2014



New Alkenes Study Results from I-Shou University Described (Key operating parameters affecting photocatalytic activity of visible-light-induced C-doped TiO2 catalyst for ethylene oxidation)

By a News Reporter-Staff News Editor at Life Science Weekly -- Investigators discuss new findings in Alkenes. According to news reporting out of Kaohsiung, Taiwan, by NewsRx editors, research stated, "We herein report the visible-light-induced photocatalytic degradation of ethylene by a C-doped TiO2 catalyst synthesized by the sol-gel method. The effects of key parameters such as visible light intensity, temperature, and feed composition (ethylene, oxygen, and water vapor) on the photocatalytic reaction rate were evaluated."

Our news journalists obtained a quote from the research from I-Shou University, "Our observations, along with experimental results, indicated that the oxidation rate of ethylene improved significantly with an increase in visible light intensity, temperature, and oxygen and ethylene concentrations. Under all experimental conditions, approximately 96-753 ppmv of ethylene, which was adsorbed onto the photocatalyst surfaces (C-doped TiO2) were stoichiometrically oxidized to CO2. High temperature was found to improve the oxidation rate, which could be attributed to an increase in the reactivity of the heterogeneous catalyst and also a hostile adsorption of water on the catalyst. We found that the oxidation rate of ethylene was suppressed considerably with an increase in the water vapor concentration from 547 to 15,000 ppmv at two specific temperatures (303 and 318 K). This observation can be explained by the law of adsorption, since polar water molecules have higher adsorption affinity on a polar catalyst surface than do nonpolar ethylene molecules. We used a Langmuir-Hinshelwood (L-H) model with explicit temperature dependence for simulating the entire set of experimental rate data."

According to the news editors, the research concluded: "The rate law was expressed as follows to account for the obtained results: Based on the L-H model, we determined the adsorption enthalpies of ethylene, water vapor, and oxygen on the C-doped TiO2 catalyst."

For more information on this research see: Key operating parameters affecting photocatalytic activity of visible-light-induced C-doped TiO2 catalyst for ethylene oxidation. Chemical Engineering Journal, 2014;248():175-183. Chemical Engineering Journal can be contacted at: Elsevier Science Sa, PO Box 564, 1001 Lausanne, Switzerland. (Elsevier - www.elsevier.com; Chemical Engineering Journal - www.elsevier.com/wps/product/cws_home/601273)

Our news journalists report that additional information may be obtained by contacting Y.T. Lin, I-Shou University, Dept. of Civil & Ecol Engn, Kaohsiung 84008, Taiwan. Additional authors for this research include C.H. Weng and F.Y. Chen (see also Alkenes).

Keywords for this news article include: Asia, Taiwan, Alkenes, Kaohsiung, Ethylenes, Photocatalyst, Nanotechnology, Photocatalytic, Emerging Technologies

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Life Science Weekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters