News Column

Researchers at Emory University School of Medicine Report Findings in Biomaterials (The impact of chronic blood-brain barrier breach on intracortical...

July 1, 2014



Researchers at Emory University School of Medicine Report Findings in Biomaterials (The impact of chronic blood-brain barrier breach on intracortical electrode function)

By a News Reporter-Staff News Editor at Journal of Technology -- A new study on Biomaterials is now available. According to news reporting originating from Atlanta, Georgia, by VerticalNews correspondents, research stated, "Brain-computer interfaces (BCIs) have allowed control of prosthetic limbs in paralyzed patients. Unfortunately, the electrodes of the BCI that interface with the brain only function for a short period of time before the signal quality on these electrodes becomes substantially diminished."

Our news editors obtained a quote from the research from the Emory University School of Medicine, "To truly realize the potential of BCIs, it is imperative to have electrodes that function chronically. In order to elucidate the physiological determinants of a chronically functional neural interface, we studied the role of the blood-brain barrier (BBB) in electrode function, because it is a key mediator of neuronal hemostasis. We monitored the status of the BBB and the consequences of BBB breach on electrode function using non-invasive imaging, electrophysiology, genomic, and histological analyses. Rats implanted with commercially available intracortical electrodes demonstrated an inverse correlation between electrode performance and BBB breach over a period of 16 weeks. Genomic analysis showed that chronically functional electrodes elicit an enhanced wound healing response. Conversely, in poorly functioning electrodes, chronic BBB breach led to local accumulation of neurotoxic factors and an influx of pro-inflammatory myeloid cells, which negatively affect neuronal health. These findings were further verified in a subset of electrodes with graded electrophysiological performance. In this study, we determine the mechanistic link between intracortical electrode function and failure."

According to the news editors, the research concluded: "Our results indicate that BBB status is a critical physiological determinant of intracortical electrode function and can inform future electrode design and biochemical intervention strategies to enhance the functional longevity of BCIs."

For more information on this research see: The impact of chronic blood-brain barrier breach on intracortical electrode function. Biomaterials, 2013;34(20):4703-13. (Elsevier - www.elsevier.com; Biomaterials - www.elsevier.com/wps/product/cws_home/30392)

The news editors report that additional information may be obtained by contacting T. Saxena, Wallace H Coulter Dept. of Biomedical Engineering at Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA 30332-0535, United States. Additional authors for this research include L. Karumbaiah, E.A. Gaupp, R. Patkar, K. Patil, M. Betancur, G.B. Stanley and R.V Bellamkonda.

Keywords for this news article include: Atlanta, Georgia, Biomaterials, United States, North and Central America.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Journal of Technology


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters