News Column

Patent Issued for Advanced Nano Technology for Growing Metallic Nano-Clusters

July 1, 2014



By a News Reporter-Staff News Editor at Journal of Technology -- According to news reporting originating from Alexandria, Virginia, by VerticalNews journalists, a patent by the inventor Wilkinson, James T. (Littleton, CO), filed on June 25, 2012, was published online on June 17, 2014.

The assignee for this patent, patent number 8753488, is JTW, LLC (Highlands Ranch, CO).

Reporters obtained the following quote from the background information supplied by the inventors: "This invention relates to Advanced Nano-technology Device and Method for Growing metallic nano-clusters utilizing a low energy electromagnetic field.

"Many ore deposits exist that contain numerous elements, such as copper, gold, silver, and other precious metals, in addition to other elements such as carbon. Traditional refinement methods use heat to create a molten state and the specific densities of the various elements to separate elements into molten layers. Other raw materials, such as coal, may include impurities, such as sulfur and mercury. Various methods are used to refine the precious metals and remove impurities. Traditional refinement processes are inefficient and dangerous and produce toxic byproducts. A promising method of extraction involves growing nano-clusters of a specific element, such as gold. Growing nano-clusters offers a way to improve extraction efficiency."

In addition to obtaining background information on this patent, VerticalNews editors also obtained the inventor's summary information for this patent: "From the foregoing discussion, it should be apparent that a need exists to improve extraction of impurities and to separate precious metals. An apparatus for growing nano-clusters is disclosed. The apparatus, in one embodiment, includes a pair of electrodes separated by an electrode pair spacing. The apparatus, in one embodiment, includes a field generation module that generates a corona discharge across the electrodes. The corona discharge generates an electromagnetic field near the electrodes. A voltage potential across the electrodes includes a medium voltage. In one embodiment, the field generation module includes a medium voltage module and a broad frequency generation module. The medium voltage module generates a medium voltage waveform. The medium voltage waveform is transmitted to the electrodes to generate the corona discharge. The broad frequency generation module generates a broad spectrum of frequencies within the medium voltage waveform. The apparatus includes, in one embodiment, a raw material feeder module that feeds particles of a raw material through the electromagnetic field. The electromagnetic field with the broad spectrum of frequencies is operative to separate at least a portion of the raw material fed through the electromagnetic field into free atoms.

"In one embodiment, the field generation module also includes an element attraction module that generates one or more attraction frequencies within the medium voltage waveform. Each attraction frequency comprises a frequency selected to cause a resonance within atoms of a specific element. The raw material includes atoms of the specific element. The attraction frequency is operative to cause atoms of the specific element to resonate between the electrodes and gather together in a nano cluster. In one embodiment, the element gathers on one or more of the electrodes. In another embodiment, the element gathers on a side of a reaction chamber within the electromagnetic field.

"In one embodiment, the pair of electrodes is a pair of electrodes within a set of two or more pairs of electrodes. In another embodiment, each electrode pair is separated by an electrode pair spacing and each pair of electrodes is separated by an electrode-pair-to-electrode-pair spacing where each pair of electrodes is oriented in a first orientation direction and the electrode-pair-to-electrode-pair spacing between pairs of electrodes is in a direction perpendicular to the electrode pair spacing. In another embodiment, the field generation module includes a duty cycle module that adjusts a duty cycle of the medium voltage waveform transmitted to each pair of electrodes. The duty cycle includes an on time and an off time. The on time and the off time together are a duty cycle period. The on time is a period when the medium voltage waveform is transmitted to a pair of electrodes and the off time is a time when the medium voltage waveform is not transmitted to the pair of electrodes. A starting time of a period of the duty cycle for a pair of electrodes is offset from other start times of periods of the duty cycle of other pairs of electrodes.

"In a further embodiment, the set of pairs of electrodes includes three or more pairs of electrodes and the duty cycle module includes a cyclonic module that alternates duty cycles to create a circular pattern of when a medium voltage waveform is transmitted to pairs of electrodes. In another further embodiment, an inverse of the period of the duty cycle is a duty cycle frequency and a switching frequency of the medium voltage waveform is a higher frequency than the duty cycle frequency. In another embodiment, the duty cycle frequency is 10 kHz and the switching frequency is 22 kHz. In another embodiment, the medium voltage module converts an input voltage to one or more medium voltage, direct current ('DC') waveforms and each waveform is transmitted to a pair of electrodes. Each waveform includes a plurality of harmonic frequencies.

"In one embodiment, the field generation module includes a power balance module that balances power between pairs of electrodes in the set of pairs of electrodes. In another embodiment, the set of two or more pairs of electrodes are arranged around a reaction chamber where an end of each electrode is closest to the reaction chamber. In one embodiment, each electrode of a pair of electrodes includes a positive electrode and a negative electrode and the positive electrodes of the set of pairs electrodes are arranged in a first plane and the negative electrodes of the set of pairs electrodes are arranged in a second plane. In a further embodiment, the reaction chamber comprises sides and the sides are configured to contain particles of the raw material as the particles of raw material pass through the electromagnetic field.

"In one embodiment, the pair of electrodes is oriented vertically. In another embodiment, the raw material feeder feeds the particles of raw material vertically through the electromagnetic field and a gravity force propels the particles of raw material through the electromagnetic field. In another embodiment, the field generation module includes an electromagnetic resonant amplifier that amplifies harmonic frequencies within the medium voltage waveform. In another embodiment, the electromagnetic resonant amplifier includes a rectangular strip with a non-conductive coating. The rectangular strip is wound into a coil and the coil includes a first half of the rectangular strip wound around a second half of the rectangular strip and is connected in a center. Current enters in the first half of the rectangular strip and travels around to the center of the coil and then travels in a reverse direction in the second half of the rectangular strip and out of the second half of the rectangular strip. Space between adjacent sections of the rectangular strip form a capacitive coupling based at least in part on the non-conductive coating.

"In one embodiment, the field generation module further comprises an electron spin module that aligns a spin of electrons within the medium voltage waveform. In another embodiment, the electron spin module aligns the spin of electrons within the medium voltage waveform by inducing a magnetic field in a conductor that conducts the medium voltage waveform to the electrodes. In another embodiment, the electron spin module includes one or more magnets surrounding the conductor. In another embodiment, the medium voltage is a voltage between 1,000 volts and 35,000 volts. In a particular embodiment, the medium voltage is a voltage of approximately 10,000 volts.

"A system for growing nano-clusters is disclosed. The system includes, in one embodiment, one or more nano-cluster modules. Each nano-cluster module includes two or more pairs of electrodes, a field generation module, and a raw material feeder module. Particles of raw material exiting a nano-cluster module feed into the raw material feeder module of a next nano-cluster module. The electrodes within each electrode pair are separated by an electrode pair spacing and each pair of electrodes is separated by an electrode-pair-to-electrode-pair spacing. Each pair of electrodes is oriented in a first orientation direction and the electrode-pair-to-electrode-pair spacing between pairs of electrodes is in a direction perpendicular to the electrode pair spacing.

"The field generation module generates a corona discharge across the electrodes. The corona discharge generates an electromagnetic field near the electrodes and a voltage potential across the electrodes is a medium voltage. In one embodiment, the field generation module includes a medium voltage module that generates a medium voltage waveform and the medium voltage waveform is transmitted to the electrodes to generate the corona discharge. In another embodiment, the field generation module includes a broad frequency generation module that generates a broad spectrum of frequencies within the medium voltage waveform. The raw material feeder module feeds particles of a raw material through the electromagnetic field. The electromagnetic field with the broad spectrum of frequencies is operative to separate at least a portion of the raw material fed through the electromagnetic field into free atoms.

"In one embodiment, each field generation module includes an element attraction module that generates an attraction frequency within the medium voltage waveform. The attraction frequency of an element attraction module is a frequency selected to cause a resonance within atoms of a specific element. The raw material includes atoms of the specific element and each nano-cluster module includes an element attraction module with an attraction frequency for a different specific element. In another embodiment, the system includes a material crushing module that crushes large particles of the raw material into smaller particles before being fed into the raw material feeder module.

"A method for growing nano-clusters includes generating a medium voltage waveform and transmitting the medium voltage waveform to one or more pairs of electrodes to generate corona discharge across each pair of electrodes. Electrodes within each pair of electrodes are separated by an electrode pair spacing. Each pair of electrodes is separated by an electrode-pair-to-electrode-pair spacing. The corona discharge generates an electromagnetic field near the electrodes and a voltage potential across the electrodes is a medium voltage. The method includes generating a broad spectrum of frequencies within the medium voltage waveform. The method includes, in one embodiment, generating one or more an attraction frequencies within the medium voltage waveform. Each attraction frequency comprises a frequency selected to cause a resonance within atoms of a specific element.

"The method includes feeding particles of a raw material through the electromagnetic field. The raw material includes atoms of the specific element. The electromagnetic field with the broad spectrum of frequencies is operative to separate at least a portion of the raw material fed through the electromagnetic field into free atoms and the attraction frequency is operative to cause atoms of the specific element to resonate between the electrodes and gather in a nano-cluster. The nano-clusters may gather on one or more of the electrodes or on a side of a reaction chamber in the electromagnetic field. In one embodiment, the method includes cycling the medium voltage waveform for each pair of electrodes at a duty cycle rate. An on time for each duty cycle for a pair of electrodes is offset from the on time for the duty cycles of other pairs of electrodes.

"Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present invention should be or are in any single embodiment of the invention. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present invention. Thus, discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment.

"Furthermore, the described features, advantages, and characteristics of the invention may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the invention may be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the invention.

"These features and advantages of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter."

For more information, see this patent: Wilkinson, James T.. Advanced Nano Technology for Growing Metallic Nano-Clusters. U.S. Patent Number 8753488, filed June 25, 2012, and published online on June 17, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8753488.PN.&OS=PN/8753488RS=PN/8753488

Keywords for this news article include: JTW LLC, Technology.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Journal of Technology


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters