News Column

Patent Application Titled "Low-Overhead Storage of a Hibernation File in a Hybrid Disk Drive" Published Online

July 1, 2014



By a News Reporter-Staff News Editor at Information Technology Newsweekly -- According to news reporting originating from Washington, D.C., by VerticalNews journalists, a patent application by the inventors EHRLICH, Richard M. (Saratoga, CA); DUNN, Eric R. (Cupertino, CA); ZAYAS, Fernando A. (Ragiora, NZ); SCHMIDT, Thorsten (Livermore, CA), filed on December 6, 2012, was made available online on June 19, 2014.

No assignee for this patent application has been made.

Reporters obtained the following quote from the background information supplied by the inventors: "Embodiments described herein relate generally to data storage units, systems and methods for storing a hibernation file in a hybrid disk drive.

"Hybrid hard disk drives (HDDs) include one or more rotating magnetic disks combined with non-volatile solid-state (e.g., flash) memory. Generally, a hybrid HDD has both the capacity of a conventional HDD and the ability to access data as quickly as a solid-state drive, and for this reason hybrid drives are expected to be commonly used in laptop computers. Some hybrid HDDs achieve the high performance of a solid-state drive by treating the non-volatile solid-state memory as a very large cache for the disk portion of the hybrid HDD. Specifically, all write data is typically accepted directly from the host into the flash memory portion of the hybrid HDD and, similarly, data read from the disk is written into flash as well. In this way, the flash memory can speed up write operations, since the relatively slower write-to-rotating disk operations do not affect how quickly data are accepted from the host unless the flash memory is full. Furthermore, the flash memory can speed up read operations by caching data that are more likely to be requested again by the host, i.e., the data used by the host most recently or most frequently. This minimizes the occurrence of relatively slow read-from-rotating-disk operations.

"One issue common to laptop computers is the need to safely store a hibernation file as quickly as possible. This is because the read/write head and the spinning mechanism of the magnetic disk drive can be damaged when physical disturbances occur while data are written to the disk, such as when a user puts a laptop into the so-called 'S4' or 'hibernate' mode and then immediately closes and picks up the laptop. Ideally, a hybrid HDD is configured to store hibernation-file data to the flash memory portion of the drive, so that the read/write heads can be parked and the storage disks spun down immediately after hibernation mode is requested. Such a configuration of a hybrid HDD is problematic, however, because hibernation files can be quite large, requiring an undesirably large portion of the flash memory to be reserved, i.e., unused, to enable the storing of a hibernation file at all times during normal operation. So while such a hybrid HDD can be readily implemented, use of the available storage resources in the hybrid HDD would be inefficient and not cost effective."

In addition to obtaining background information on this patent application, VerticalNews editors also obtained the inventors' summary information for this patent application: "One or more embodiments provide systems and methods for low-overhead storage of a hibernation file in a hybrid hard disk drive that includes a storage disk and non-volatile solid-state memory. During operation, the hybrid drive allocates a portion of the solid-state memory large enough to accommodate a hibernation file associated with a host device of the hybrid drive. In addition to the erased memory blocks that are normally present during operation of the hybrid drive, the portion of the solid-state drive allocated for accommodating the hibernation file may include over-provisioned memory blocks, blocks used to store a previous hibernation file that has been trimmed, non-dirty data, and/or obsolete data.

"A method of hibernating a device having a volatile memory and connected to a nonvolatile storage unit configured with a solid-state memory and a magnetic memory, according to an embodiment, includes receiving a hibernate command and, upon receiving the hibernate command, storing contents of the volatile memory in first and second portions of the solid-state memory without storing contents of the volatile memory in the magnetic memory. The first portion comprises erased memory blocks and the second portion comprises memory blocks storing at least one of data that are also stored on the magnetic memory, invalid data (which may be trimmed data or obsolete data), and contents of a previous hibernation file associated with the device.

"A method of storing data in a device having a volatile memory and connected to a nonvolatile storage unit configured with a solid-state memory and a magnetic memory, according to another embodiment, comprises transmitting a write command that is not associated with hibernating the device to the nonvolatile storage unit and, when a combined data storage capacity of an allocated storage space in the solid-state memory is less than a predetermined threshold, writing data to the magnetic memory. The allocated storage space includes a first portion comprising erased memory blocks and a second portion comprising memory blocks storing at least one of data that are also stored on the magnetic memory, invalid data (which may be trimmed data or obsolete data), and contents of a previous hibernation file associated with the device.

"According to another embodiment, a nonvolatile data storage unit comprises a magnetic memory, a solid-state memory, and a storage controller. The storage controller is configured to receive a write command that is not associated with hibernating a host device of the nonvolatile storage unit and, when a combined data storage capacity of an allocated storage space in the solid-state memory is less than a predetermined threshold, writing data to the magnetic memory. The allocated storage space includes a first portion comprising erased memory blocks and a second portion comprising memory blocks storing at least one of data that are also stored on the magnetic memory, invalid data (which may be trimmed data or obsolete data), and contents of a previous hibernation file associated with the device.

BRIEF DESCRIPTION OF THE DRAWINGS

"So that the manner in which the above recited features of embodiments of the invention can be understood in detail, a more particular description of embodiments of the invention, briefly summarized above, may be had by reference to the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.

"FIG. 1 is a schematic view of an exemplary disk drive, according to an embodiment of the invention.

"FIG. 2 illustrates an operational diagram of a hybrid drive with elements of electronic circuits shown configured according to an embodiment of the invention.

"FIG. 3 is a schematic illustration of memory blocks included in a flash memory device and configured according to an embodiment of the invention.

"FIG. 4 sets forth a flowchart of method steps for storing data in a hybrid drive, according to embodiments of the invention.

"FIG. 5 sets forth a flowchart of method steps for hibernating a computing device that has a volatile memory and is connected to a nonvolatile storage unit, such as a hybrid drive, according to embodiments of the invention.

"FIG. 6 sets forth a flowchart of method steps for storing data in a computing device that has a volatile memory and is connected to a nonvolatile storage unit, such as a hybrid drive, according to embodiments of the invention.

"For clarity, identical reference numbers have been used, where applicable, to designate identical elements that are common between figures. It is contemplated that features of one embodiment may be incorporated in other embodiments without further recitation."

For more information, see this patent application: EHRLICH, Richard M.; DUNN, Eric R.; ZAYAS, Fernando A.; SCHMIDT, Thorsten. Low-Overhead Storage of a Hibernation File in a Hybrid Disk Drive. Filed December 6, 2012 and posted June 19, 2014. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=576&p=12&f=G&l=50&d=PG01&S1=20140612.PD.&OS=PD/20140612&RS=PD/20140612

Keywords for this news article include: Patents, Information Technology, Information and Data Storage.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Information Technology Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters