News Column

Patent Issued for Navigation Apparatus and Method of Detection That a Parking Facility Is Sought

July 3, 2014



By a News Reporter-Staff News Editor at Computer Weekly News -- According to news reporting originating from Alexandria, Virginia, by VerticalNews journalists, a patent by the inventor Tertoolen, Simone Francine (Delft, NL), filed on October 9, 2008, was published online on June 17, 2014.

The assignee for this patent, patent number 8756000, is TomTom International B.V. (Amsterdam, NL).

Reporters obtained the following quote from the background information supplied by the inventors: "Portable computing devices, for example Portable Navigation Devices (PNDs) that include GPS (Global Positioning System) signal reception and processing functionality are well known and are widely employed as in-car or other vehicle navigation systems.

"In general terms, a modern PND comprises a processor, memory and map data stored within said memory. The processor and memory cooperate to provide an execution environment in which a software operating system is typically established, and additionally it is commonplace for one or more additional software programs to be provided to enable the functionality of the PND to be controlled, and to provide various other functions.

"Typically, these devices further comprise one or more input interfaces that allow a user to interact with and control the device, and one or more output interfaces by means of which information may be relayed to the user. Illustrative examples of output interfaces include a visual display and a speaker for audible output. Illustrative examples of input interfaces include one or more physical buttons to control on/off operation or other features of the device (which buttons need not necessarily be on the device itself but could be on a steering wheel if the device is built into a vehicle), and a microphone for detecting user speech. In one particular arrangement, the output interface display may be configured as a touch sensitive display (by means of a touch sensitive overlay or otherwise) additionally to provide an input interface by means of which a user can operate the device by touch.

"Devices of this type will also often include one or more physical connector interfaces by means of which power and optionally data signals can be transmitted to and received from the device, and optionally one or more wireless transmitters/receivers to allow communication over cellular telecommunications and other signal and data networks, for example Bluetooth, Wi-Fi, Wi-Max, GSM, UMTS and the like.

"PNDs of this type also include a GPS antenna by means of which satellite-broadcast signals, including location data, can be received and subsequently processed to determine a current location of the device.

"The PND may also include electronic gyroscopes and accelerometers which produce signals that can be processed to determine the current angular and linear acceleration, and in turn, and in conjunction with location information derived from the GPS signal, velocity and relative displacement of the device and thus the vehicle in which it is mounted. Typically, such features are most commonly provided in in-vehicle navigation systems, but may also be provided in PNDs if it is expedient to do so.

"The utility of such PNDs is manifested primarily in their ability to determine a route between a first location (typically a start or current location) and a second location (typically a destination). These locations can be input by a user of the device, by any of a wide variety of different methods, for example by postcode, street name and house number, previously stored 'well known' destinations (such as famous locations, municipal locations (such as sports grounds or swimming baths) or other points of interest), and favorite or recently visited destinations.

"Typically, the PND is enabled by software for computing a 'best' or 'optimum' route between the start and destination address locations from the map data. A 'best' or 'optimum' route is determined on the basis of predetermined criteria and need not necessarily be the fastest or shortest route. The selection of the route along which to guide the driver can be very sophisticated, and the selected route may take into account existing, predicted and dynamically and/or wirelessly received traffic and road information, historical information about road speeds, and the driver's own preferences for the factors determining road choice (for example the driver may specify that the route should not include motorways or toll roads).

"The device may continually monitor road and traffic conditions, and offer to or choose to change the route over which the remainder of the journey is to be made due to changed conditions. Real time traffic monitoring systems, based on various technologies (e.g. mobile phone data exchanges, fixed cameras, GPS fleet tracking), are being used to identify traffic delays and to feed the information into notification systems.

"PNDs of this type may typically be mounted on the dashboard or windscreen of a vehicle, but may also be formed as part of an on-board computer of the vehicle radio or indeed as part of the control system of the vehicle itself. The navigation device may also be part of a hand-held system, such as a PDA (Portable Digital Assistant), a media player, a mobile phone or the like, and in these cases, the normal functionality of the hand-held system is extended by means of the installation of software on the device to perform both route calculation and navigation along a calculated route.

"Route planning and navigation functionality may also be provided by a desktop or mobile computing resource running appropriate software. For example, the Royal Automobile Club (RAC) provides an on-line route planning and navigation facility at http://www.rac.co.uk, which facility allows a user to enter a start point and a destination whereupon the server with which the user's computing resource is communicating calculates a route (aspects of which may be user specified), generates a map, and generates a set of exhaustive navigation instructions for guiding the user from the selected start point to the selected destination. The facility also provides for pseudo three-dimensional rendering of a calculated route, and route preview functionality which simulates a user travelling along the route and thereby provides the user with a preview of the calculated route.

"In the context of a PND, once a route has been calculated, the user interacts with the navigation device to select the desired calculated route, optionally from a list of proposed routes. Optionally, the user may intervene in, or guide the route selection process, for example by specifying that certain routes, roads, locations or criteria are to be avoided or are mandatory for a particular journey. The route calculation aspect of the PND forms one primary function, and navigation along such a route is another primary function.

"During navigation along a calculated route, it is usual for such PNDs to provide visual and/or audible instructions to guide the user along a chosen route to the end of that route, i.e. the desired destination. It is also usual for PNDs to display map information on-screen during the navigation, such information regularly being updated on-screen so that the map information displayed is representative of the current location of the device, and thus of the user or user's vehicle if the device is being used for in-vehicle navigation.

"An icon displayed on-screen typically denotes the current device location, and is centred with the map information of current and surrounding roads in the vicinity of the current device location and other map features also being displayed. Additionally, navigation information may be displayed, optionally in a status bar above, below or to one side of the displayed map information, examples of navigation information include a distance to the next deviation from the current road required to be taken by the user, the nature of that deviation possibly being represented by a further icon suggestive of the particular type of deviation, for example a left or right turn. The navigation function also determines the content, duration and timing of audible instructions by means of which the user can be guided along the route. As can be appreciated a simple instruction such as 'turn left in 100 m' requires significant processing and analysis. As previously mentioned, user interaction with the device may be by a touch screen, or additionally or alternately by steering column mounted remote control, by voice activation or by any other suitable method.

"A further important function provided by the device is automatic route re-calculation in the event that: a user deviates from the previously calculated route during navigation (either by accident or intentionally); real-time traffic conditions dictate that an alternative route would be more expedient and the device is suitably enabled to recognize such conditions automatically, or if a user actively causes the device to perform route re-calculation for any reason.

"It is also known to allow a route to be calculated with user defined criteria. For example, the user may prefer a scenic route to be calculated by the device, or may wish to avoid any roads on which traffic congestion is likely, expected or currently prevailing. The device software would then calculate various routes and weigh more favourably those that include along their route the highest number of points of interest (known as POIs) tagged as being for example of scenic beauty, or, using stored information indicative of prevailing traffic conditions on particular roads, order the calculated routes in terms of a level of likely congestion or delay on account thereof. Other POI-based and traffic information-based route calculation and navigation criteria are also possible.

"Although the route calculation and navigation functions are fundamental to the overall utility of PNDs, it is possible to use the device purely for information display, or 'free-driving', in which only map information relevant to the current device location is displayed, and in which no route has been calculated and no navigation is currently being performed by the device. Such a mode of operation is often applicable when the user already knows the route along which it is desired to travel and does not require navigation assistance.

"Devices of the type described above, for example the GO 930 Traffic model manufactured and supplied by TomTom International B.V., provide a reliable means for enabling users to navigate from one position to another. Such devices are of great utility when the user is not familiar with the route to the destination to which they are navigating.

"As indicated above, one or more POIs can be selected by a user of the PND in respect of a journey to be embarked upon or during a journey. To select a POI during a journey, a user typically negotiates a menu structure of a user interface of the PND in order to select a category of POI desired, for example a supermarket or a car park. The application software of the PND then identifies, using locally stored data, a number of POIs of the type selected by the user, for example car parks, and presents the identified car parks to the user via the user interface. To assist the user, the application software typically orders the car parks identified by distance from a current location of the PND and indicates an associated distance value adjacent the car park listed. The user can then select one of the car parks identified by the user interface and other parts of the application software. In response to selection of one of the car parks, the application software either sets the car park selected as a waypoint or an ultimate destination and the PND then calculates a route either via the car park selected or to the car park selected, as appropriate. The selection of the car park as a destination or a waypoint can similarly be made in relation to functionality of the PND to prepare a route or an itinerary. Of course, if the user is already en-route and the PND is already providing navigation assistance, the PND integrates the car park chosen into an existing route calculated, for example by recalculating the existing route to take into account the selection made by the user.

"An alternative method also exists to specify the car park as the destination. The alternative method comprises configuring a route using a route configuration procedure of the application software in respect of a destination location and then re-executing the route configuration procedure in order to amend the destination to a POI near the destination location previously set. The selection of the POI near the destination location previously set comprises negotiating a part of a menu structure of the application software in order to select, in this example, car parking as a category of POI.

"On the whole, this technique works quite well and provides satisfactory results for the user. However, a disadvantage of these techniques is that a user, wishing to navigate to or via a given destination location, has to negotiate a menu structure and perform a relatively large number of steps in order to obtain navigation assistance to a car park near the destination location. These procedures are therefore more time consuming than a simple route selection procedure where a user simply selects a destination location, and possibly a starting point and/or a waypoint, without negotiating a menu structure dedicated to POI selection. Also, it is not always apparent to a user that a car park near the destination location is required; the user may assume that car parking is provided at the destination location only to find, upon arrival, that a car parking facility is full or does not exist. In some instances, it may simply not occur to the user to plan a seemingly straightforward route down to a level of detail that includes specifying a car park as a destination. In any event, many users of electronic apparatus are not aware of the full extent of services provided by the electronic apparatus. In this respect, navigation apparatus are no different in this regard. Additionally, when navigating to a location selected, the user can be unaware of a car park in the vicinity of the destination location that is of interest or use to the user, resulting in a missed opportunity to navigate to a more convenient or appropriate location. Furthermore, when engaging in so-called 'free driving' as mentioned above, no destination location is input into the navigation apparatus, because the navigation apparatus is not providing navigation assistance. Consequently, an opportunity to set a route that specifies a destination location, let alone a car park as a destination location, does not present itself. It may, however, subsequently transpire that when the user reaches an intended destination location of which the navigation apparatus is not advised, the user decides that driving to a parking facility is desired. In such circumstances, the user has to use functionality of the application software that supports navigation to a POI in order to find the car parking facility. To disrupt a free driving session to set a navigation route or to add a navigation route once the free driving session has terminated at the destination location is inconvenient for the user."

In addition to obtaining background information on this patent, VerticalNews editors also obtained the inventor's summary information for this patent: "According to a first aspect of the present invention, there is provided a navigation apparatus comprising: a location determination unit; a processing resource arranged to support, when in use, a user interface, the processing resource being operably coupled to the location determination unit in order to obtain location information therefrom; wherein the processing resource is arranged to analyse the location information; and the user interface is arranged to generate a message offering assistance in relation to finding a parking facility in response to the processing resource determining that a location information characteristic associated with the location information is in accordance with a predetermined criterion.

"The message may be visual and/or audible.

"The predetermined criterion may relate to a driving behaviour. The driving behaviour may relate to at least one parameter associated with driving, for example change of spatial location with time.

"The processing resource may be arranged to support a navigation function; the navigation function may be arranged to provide navigation assistance to a selected location.

"The processing resource may be arranged to query a database comprising parking facility information in order to find the parking facility; the parking facility may be within a predetermined vicinity of the location selected.

"The database may be a points of interest database. The location selected may be a destination location or a waypoint location.

"The predetermined criterion is a speed criterion. The speed criterion may be a predetermined maximum speed threshold, for example less than about 10 ms-1, such as less than about 7 ms-1 or less than about 3 ms-1. The speed criterion may be a range of speeds. The predetermined maximum speed threshold may therefore be accompanied by a predetermined minimum speed threshold, for example at least about 1 ms-1 or at least about 2 ms-1.

"The predetermined criterion may be a correlation with a predetermined path. The predetermined path may be substantially loop-like. The predetermined path may be substantially a reverse course.

"The predetermined criterion may be a proximity threshold with respect to the location selected.

"The predetermined criterion may be failure to stop at the selected location for a minimum predetermined period of time.

"The predetermined criterion may be movement away from the selected location.

"The determination of the characteristic of the at least part of the location information being in accordance with the predetermined criterion may be made upon or after arrival at the selected location.

"The parking facility found may be a closest parking facility with respect to the selected location.

"The processing resource may be arranged to support generation of the message when navigation assistance is not being provided.

"The navigation apparatus may be arranged to support a free driving mode of operation.

"The processing resource may be arranged to query a database comprising parking facility information in order to find the parking facility; the parking facility may be within a predetermined vicinity of a current location.

"The database of parking facility information may comprise data identifying a location of the parking facility.

"The user interface may be arranged to await a response from a user following generation of the message, and the processing resource may be arranged to record the response when the response is indicative of a declination of the offer of assistance for preventing the message being repeated.

"The user interface may be arranged to generate the message in response to the processing resource determining that at least two location information characteristics associated with the location information are respectively in accordance with at least two predetermined criteria; the at least two predetermined criteria may comprise the predetermined criterion.

"The at least two predetermined criteria may relate to one or more driving behaviours.

"The processing resource may be arranged to support a navigation function; the user interface may be arranged to receive a user response to the message accepting the offer of assistance; and the processing resource may be arranged to initiate a route configuration procedure in response to the user response.

"The processing resource may be arranged to provide navigation assistance to the parking facility found.

"The processing resource may be arranged to calculate a route to the parking facility found following performance of the route configuration procedure.

"According to a second aspect of the present invention, there is provided a portable navigation device comprising the navigation apparatus as set forth above in relation to the first aspect of the invention.

"According to a third aspect of the present invention, there is provided a method of determination that a parking facility is being sought, the method comprising: obtaining location information from a location determination unit; analysing the location information; determining whether a characteristic of at least part of the location information is in accordance with a predetermined criterion; and a user interface generating a message offering assistance in relation to finding a parking facility in response to a determination that the characteristic of the at least part of the location information is in accordance with the predetermined criterion.

"According to a fourth aspect of the present invention, there is provided a method of modifying a route being used by a navigation apparatus to provide navigation assistance, the method comprising the method of determining that a parking facility is being sought as set forth above in relation to the third aspect of the invention.

"According to a fifth aspect of the present invention, there is provided a computer program element comprising computer program code means to make a computer execute the method as set forth above in relation to the third or fourth aspects of the invention.

"The computer program element may be embodied on a computer readable medium.

"Advantages of these embodiments are set out hereafter, and further details and features of each of these embodiments are defined in the accompanying dependent claims and elsewhere in the following detailed description.

"It is thus possible to provide a navigation apparatus and a method of detection that a parking facility is sought that obviates the need for a user to perform a dedicated search for a POI, thereby simplifying user interface interaction. The provision of an indication of the parking facility within the predetermined vicinity of the location selected reduces the number of gestures required from a user in order to select the parking facility. In this respect, the user is provided with a mechanism for selecting the parking facility that is more convenient than having specifically to negotiate a part of the user interface provided for POI selection. User interface interaction time is thus reduced. The apparatus and method also enable a user to have an overview in relation to the surroundings of the location selected. In relation to parking facilities, the identification of a parking facility near the location selected saves the user time seeking the parking facility or another, less optimum, parking facility within the vicinity of the location selected. Also, temptation to park illegally is reduced. The apparatus and method thus provide an improved user experience in relation to the navigation apparatus, as well as the possibility of saving the user time, money and inconvenience."

For more information, see this patent: Tertoolen, Simone Francine. Navigation Apparatus and Method of Detection That a Parking Facility Is Sought. U.S. Patent Number 8756000, filed October 9, 2008, and published online on June 17, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8756000.PN.&OS=PN/8756000RS=PN/8756000

Keywords for this news article include: Software, TomTom International B.V.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Computer Weekly News


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters