News Column

New Findings from Southeast University Yields New Data on DNA Research (Electrochemiluminescence resonance energy transfer between graphene quantum...

July 4, 2014



New Findings from Southeast University Yields New Data on DNA Research (Electrochemiluminescence resonance energy transfer between graphene quantum dots and gold nanoparticles for DNA damage detection)

By a News Reporter-Staff News Editor at Genomics & Genetics Weekly -- Current study results on DNA Research have been published. According to news reporting originating from Nanjing, People's Republic of China, by NewsRx correspondents, research stated, "Bright blue luminescent graphene quantum dots (GQDs) with major graphitic structured nanocrystals and a photoluminescence (PL) quantum yield of 15.5% were synthesized and used to monitor DNA damage. The GQDs were prepared by ultraviolet irradiation without using a chemical agent."

Our news editors obtained a quote from the research from Southeast University, "The as-prepared GQDs showed excitation-dependent PL and stable electrochemiluminescence (ECL) behaviors. Gold nanoparticles (AuNPs) were linked with a probe of single-stranded DNA (cp53 ssDNA) to form AuNPs-ssDNA. The ECL signal of the GQDs could be quenched by non-covalent binding of the AuNPs-ssDNA to the GQDs, due to the occurrence of an electrochemiluminescence resonance energy transfer between the GQDs and the AuNPs. When AuNPs-ssDNA was then hybridized with target p53 DNA to form AuNPs-dsDNA, the non-covalent interaction between the GQDs and the ds-DNA weakened and the ECL of the GQDs recovered. This engendered an ECL sensor for the detection of target p53 ssDNA, with a detection limit of 13 nM. The resultant ECL sensor could be used for DNA damage detection based on its different bonding ability to damaged target p53 ssDNA and cp53 ssDNA linked AuNPs."

According to the news editors, the research concluded: "The presented method could be expanded to the development of other ECL biosensors, for the quantification of nucleic acids, single nucleotide polymorphisms or other aptamer-specific biomolecules."

For more information on this research see: Electrochemiluminescence resonance energy transfer between graphene quantum dots and gold nanoparticles for DNA damage detection. Analyst, 2014;139(10):2404-10. (Royal Society of Chemistry - www.rsc.org/; Analyst - pubs.rsc.org/en/journals/journalissues/an)

The news editors report that additional information may be obtained by contacting Q. Lu, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Jiangning District 211189, Nanjing, Jiangsu Province, People's Republic of China. Additional authors for this research include W. Wei, Z. Zhou, Z. Zhou, Y. Zhang and S. Liu (see also DNA Research).

Keywords for this news article include: Asia, Nanjing, Genetics, p53 Gene, DNA Damage, Proteomics, DNA Research, Nanotechnology, Gold Nanoparticles, Deoxyribonucleic Acid, Emerging Technologies, People's Republic of China.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Genomics & Genetics Weekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters