News Column

NASA project could be next big thing in video games

June 2, 2014

By Diane Tennant, The Virginian-Pilot



June 02--HAMPTON -- The video game's description promised that two doctors were about to be swallowed by the jaws of fate.

Watching the action on the screen, Alan Pope said, somewhat unnecessarily, "You want to be careful with the scalpel when it's jumping around."

"This is really tricky," replied Chad Stephens, studying the chest he was about to cut open.

The NASA research scientist wore a headset with sensors that monitored his brain waves. As he focused, his brain waves changed frequency, indicated by changing colors of LED lights below the screen. They flickered between red and yellow, then steadied on green. Stephens made a sudden movement with his hand.

"Oh, that's good!" Pope exclaimed. A robotic voice from the game "Trauma Center: New Blood" intoned, "The incision has been made."

Pope has a master's degree in electrical engineering and a doctorate in clinical psychology. Stephens is working on his psychology dissertation. Both work in aeronautics at NASA'sLangley Research Center, where their core research on cockpit design has led to an interesting spinoff: a biofeedback device that makes video games harder for tense or distracted players.

The application is the latest in Pope's research on brain wave monitoring. His studies on cockpit automation in the 1990s led to the creation of attention-training games by a North

Carolina company.

It's all part of NASA's transfer of tax-funded research into the private sector for development of new products and uses that benefit the public as well as the space agency. Langley research has been used by Speedo to create faster racing swimsuits, by Medtronics Inc. to stabilize heart-failure patients, and by NASCAR to clean air inside race cars.

NASA research can be found in medical devices, industrial smokestack scrubbers, panoramic cameras, solar refrigerators, emergency air supplies for coal miners, parachutes for airplanes and more. The agency says its research has been used to save 444,000 lives since 2004, and has generated $5.1 billion for the economy.

The biofeedback technology is commercially available from NASA's Technology Gateway (http://technologygateway.nasa.gov). Its inventors say it could be used in anything from video games to training simulations for medical doctors to athletes -- wherever improved concentration would also improve performance.

"We didn't invent the Wii, and we didn't create the game," Stephens said, "but we figured out how we could modify the controls to serve as feedback to the user."

In April, NASA obtained a patent for using the technology, called MindShift, on the Wii gaming system. An application has been submitted for Kinect.

"If a company was interested, it could involve this biofeedback mechanism into a game," Stephens said. "For example, a wizard could use his mental powers to go through the game. Maybe use it in a challenge here and there to demonstrate his skill.

"We could measure fear and have that impact the game in some way. It has the potential to involve a player's real emotion into the game."

NASA uses the technology to assess new cockpit designs by monitoring brain waves, heart rate and eye movement of pilots in a simulator.

"We want to be able to sense what kind of state they're in and provide feedback on a continuous basis so they can understand how their state affects their performance," Pope said. "If we design something that takes up too much of their attention or doesn't draw their attention, we probably have poor design."

Pilots can be taught to focus through standard biofeedback training, where the subject tries to control his heart rate, for example, while moving a line or a bar on a monitor. That can be boring, Pope said. Many of the test pilots enjoyed golf, so the researchers incorporated the biofeedback training into a game where being "in the zone" -- mind in perfect sync with body -- is important.

They tested a putting green that reacted to a player's brain waves. When stressed or unfocused, the biofeedback mechanism caused the indoor putting green to undulate, the hole to shrink and a targeting laser to swing back and forth. By relaxing and focusing on the task at hand, players could sink the putt more easily.

Then the researchers tried it with video games, which have real-world possibilities, too.

"Playing a surgery game with an unsteady hand is challenging," Pope said. "You could imagine this as a surgeon in training learning how to focus, while it teaches the manual skill of surgery."

They booted up "Link's Crossbow Training" on the Wii. Pope put on the headset, with a clip on his left earlobe to track his pulse. The cursor jumped around, and he couldn't aim until his heart rate slowed.

He picked off a single target on the first screen and two targets on the next. Then five targets popped up at once, and the cursor jumped around so he couldn't aim.

"Got a little excited there," Pope said. As he calmed down and focused, the cursor steadied and he knocked down the targets one after the other.

"We think this is the next stage beyond motion sensing games," he said. "That's why we call it MindShift. We wanted developers to think about games in different ways. That would require a mind shift."

Diane Tennant, 757-446-2478,

diane.tennant@pilotonline.com

___

(c)2014 The Virginian-Pilot (Norfolk, Va.)

Visit The Virginian-Pilot (Norfolk, Va.) at pilotonline.com

Distributed by MCT Information Services


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Virginian-Pilot (Norfolk, VA)


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters