News Column

Patent Issued for Voltage Detection Circuit and Method for Controlling the Same

June 25, 2014



By a News Reporter-Staff News Editor at Electronics Newsweekly -- Renesas Electronics Corporation (Kanagawa, JP) has been issued patent number 8749224, according to news reporting originating out of Alexandria, Virginia, by VerticalNews editors.

The patent's inventors are Matsushita, Rumi (Kanagawa, JP); Nakatsu, Shinichi (Kanagawa, JP); Ishihara, Kuniyasu (Kanagawa, JP); Eto, Kimiharu (Kanagawa, JP); Indo, Seiya (Kanagawa, JP); Shimoda, Hirotaka (Kanagawa, JP).

This patent was filed on July 21, 2011 and was published online on June 10, 2014.

From the background information supplied by the inventors, news correspondents obtained the following quote: "The present invention relates to a voltage detection circuit and a method for controlling the same.

"A microcontroller usually has a voltage detection circuit for detecting a voltage drop in order to avoid a malfunction caused by a power supply voltage drop in a system like a mobile apparatus using a battery.

"FIG. 19 shows a low voltage detector 1 generally carried on the microcontroller. As shown in FIG. 19, the low voltage detector 1 has a comparison voltage generation circuit 2, a comparator 3, a reference voltage generation circuit 4, and a latch circuit 5.

"The comparison voltage generation circuit 2 has a ladder resistor 6 and a voltage selection circuit 7. The ladder resistor 6 has multiple resistors coupled in series between a power supply terminal and a grounding terminal. At nodes among these resistors, multiple voltages obtained by dividing with the resistors can be generated. The voltage selection circuit 7 selects and outputs one of the voltages that the ladder resistor 6 generates. The voltage that the voltage selection circuit 7 selected is designated by a comparison voltage.

"The comparator 3 compares a voltage that the reference voltage generation circuit 4 generated and the comparison voltage. Then, the comparator 3 outputs a comparison result as a detection signal. The latch circuit 5 latches the detection signal from the comparator 3 according to a clock, and outputs it as a reset signal or interrupt signal.

"The low voltage detector 1 like this detects that the power supply voltage lowers less than a predetermined voltage value. Then, it is capable of preventing the malfunction of a microcontroller that adopts this low voltage detector 1 by outputting the interrupt signal or reset signal. Incidentally, whether the signal to be outputted is the reset signal or interrupt signal is determined according to a configuration of the microcontroller that adopts this low voltage detector 1.

"Here, in respect of its capability, the number of sensors that the apparatus has on it, such as a touch sensor and an acceleration sensor, is increasing in recent years. Thus, since multiple sensors are coupled to the microcontroller, multiple comparators for comparing multiple voltages have become necessary. However, the low voltage detector 1 described above can detect only an internal voltage drop of the microcontroller. Therefore, it is incapable of detecting a voltage drop of an external input voltage, such as a sensor output that the microcomputer inputs therein from the outside.

"As a system for detecting the voltage drop of the external input voltage inputted from the outside in this way, there is a microcontroller as described in R8C/35A Group Hardware Manual, Renesas Microcomputer R8C Family/R8C/3x Series, pp. 73 to 90. FIG. 20 shows a block configuration diagram of a low voltage detection circuit 10 described in R8C/35A Group Hardware Manual, Renesas Microcomputer R8C Family/R8C/3x Series, pp. 73 to 90.

"As shown in FIG. 20, the low voltage detection circuit 10 has a ladder resistor 11, a switch circuit 12, level selection circuits 13, 14, comparators 15 to 17, an external voltage input terminal 18, a power supply terminal 19, registers REG11 to REG13, and OR circuits OR11 to OR13.

"The low voltage detection circuit 10 can compare multiple voltages generated by the ladder resistor and an internal reference voltage. For example, the level selection circuits 13, 14 each select one of the voltages generated by the ladder resistor, and output it to the comparators 16, 17, respectively. The comparators 16, 17 each compare the voltage that these level selection circuits 13, 14 selected and the internal reference voltage, and output the comparison result as voltage detection signals S2, S3, respectively. Incidentally, the value of the voltage detection signal S2 is stored in the register REG13.

"On the other hand, the switch circuit 12 selects either the voltage generated by the ladder resistor or the external voltage inputted from the external voltage input terminal 18 and inputs it into a non-inverting input terminal of the comparator 15. That selection is decided depending on a value that a register REG11 retains. That is, the comparator 15 compares either the voltage generated by the ladder resistor or the external input voltage inputted from the external voltage input terminal 18 with the internal reference voltage depending on the value that the register REG11 retains. The comparison result is outputted as a voltage detection signal S1. Incidentally, the value of the voltage detection signal S1 is stored in a register REG12.

"Thus, the low voltage detection circuit 10 can switch either the external input voltage or the voltage generated from a power supply voltage as a comparison object of the reference voltage with the switch circuit 12. This enables detection of the drop of the external input voltage other than the power supply voltage that cannot be done by the low voltage detector 1."

Supplementing the background information on this patent, VerticalNews reporters also obtained the inventors' summary information for this patent: "As mentioned above, although a low voltage detection circuit 10 can select a power supply voltage and an external input voltage in a register REG11, it is necessary to decide which one is to be used in advance before performing a voltage detection operation. Therefore, for example, when the external input voltage is selected, a voltage drop of the power supply voltage will not be able to be detected. This state is retained until a value of the register REG11 is rewritten. Therefore, when the power supply voltage lowers during this period, there is a possibility that system malfunction may be generated.

"On the other hand, although if the power supply voltage drop is always detected, the above-mentioned problem will be solved, in this case a comparator for always monitoring the power supply voltage drop needs to be prepared, which causes occurrence of a problem that a chip area of the microcontroller increases.

"One aspect of the present invention is a voltage detection circuit that has: a comparison voltage selection circuit that selects at least one from multiple divided voltage values of the power supply voltage, and outputs it as a first voltage; a detection object selection circuit that selects either the external input voltage inputted from an external terminal or the first voltage according to a first control signal, and outputs it as a comparison voltage; a reference voltage generation circuit that generates a reference voltage; a comparator that compares the reference voltage and the comparison voltage, and outputs the comparison result as a detection signal; and a control circuit that detects the first voltage, and when a variation is detected from the detection result, generates the first voltage so that the detection object selection circuit may output the first voltage as the comparison voltage.

"Another aspect of the present invention is a method for controlling a voltage detection circuit that has a voltage selection circuit that outputs a voltage commensurate with the power supply voltage as the first voltage, a detection voltage selection circuit that selects either the external input voltage inputted from the external terminal or the first voltage and outputs it as the comparison voltage, the reference voltage generation circuit that generates the reference voltage, and the comparator that compares the reference voltage and the comparison voltage and outputs the comparison result as the detection signal. With this control method, the detection voltage selection circuit is made to output either the first voltage or the external input voltage as the comparison voltage by time division, and when a variation of the first voltage is detected, even when the detection object selection circuit is selecting the external input voltage, the detection object selection circuit is made to select the first voltage and to output it as the comparison voltage.

"The voltage detection circuit according to the present invention is capable of monitoring the external input voltage and the first voltage commensurate with the power supply voltage by time division. Then, when the variation of the first voltage commensurate with the power supply voltage is detected, even during a period of monitoring the external input voltage, the period can be changed forcedly to a period of monitoring the first voltage. Therefore, in spite of being able to detect the power supply voltage drop without leaking, it becomes possible for the only one comparator to detect both the power supply voltage drop and an external input voltage drop.

"According to the voltage detection circuit according to the present invention, it become possible to detect the power supply voltage drop and detect a voltage of the external input voltage without increasing a circuit scale."

For the URL and additional information on this patent, see: Matsushita, Rumi; Nakatsu, Shinichi; Ishihara, Kuniyasu; Eto, Kimiharu; Indo, Seiya; Shimoda, Hirotaka. Voltage Detection Circuit and Method for Controlling the Same. U.S. Patent Number 8749224, filed July 21, 2011, and published online on June 10, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8749224.PN.&OS=PN/8749224RS=PN/8749224

Keywords for this news article include: Microcontroller, Renesas Electronics Corporation.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Electronics Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters