News Column

Patent Issued for Method of Manufacturing Handheld Medical Devices Including Microwave Amplifier Unit

June 25, 2014



By a News Reporter-Staff News Editor at Journal of Engineering -- According to news reporting originating from Alexandria, Virginia, by VerticalNews journalists, a patent by the inventors Behnke, II, Robert J. (Erie, CO); Jensen, Jeffrey L. (Boulder, CO); Frushour, Scott E. M. (Boulder, CO); Moul, Wayne L. (Loveland, CO), filed on September 20, 2011, was published online on June 10, 2014.

The assignee for this patent, patent number 8745846, is Covidien LP (Mansfield, MA).

Reporters obtained the following quote from the background information supplied by the inventors: "The present disclosure relates to handheld medical devices suitable for use in tissue ablation applications. More particularly, the present disclosure relates to medical devices with a microwave amplifier unit at the device handle, electrosurgical systems including the same, methods of directing energy to tissue using the same, and methods of manufacturing the same.

"Electrosurgical instruments have become widely used by surgeons. Electrosurgery involves the application of thermal and/or electrical energy to cut, dissect, ablate, coagulate, cauterize, seal or otherwise treat biological tissue during a surgical procedure. Electrosurgery is typically performed using a handpiece including a surgical instrument (e.g., end effector or ablation probe) adapted to transmit energy to a tissue site during electrosurgical procedures, a remote electrosurgical generator operable to output energy, and a cable assembly operatively connecting the surgical instrument to the remote generator.

"In various open and laparoscopic surgeries, it is necessary to coagulate, seal or weld tissues. A number of devices are available that can be used to provide high bursts of energy for short periods of time to coagulate, cauterize, cut and/or seal tissue. By utilizing an electrosurgical forceps, a surgeon can cauterize, coagulate, desiccate and/or cut tissue and/or simply reduce or slow bleeding by controlling the intensity, frequency and duration of the electrosurgical energy applied through the end effector to the tissue. The energy is generated by a remote generator and applied to the tissue via electrodes that are electrically connected via a cable assembly to the generator.

"Treatment of certain diseases requires the destruction of malignant tissue growths, e.g., tumors. In the treatment of diseases such as cancer, certain types of tumor cells have been found to denature at elevated temperatures that are slightly lower than temperatures normally injurious to healthy cells. Known treatment methods, such as hyperthermia therapy, heat diseased cells to temperatures above 41.degree. C. while maintaining adjacent healthy cells below the temperature at which irreversible cell destruction occurs. These methods may involve applying electromagnetic radiation to heat, ablate and/or coagulate tissue. There are a number of different types of electrosurgical apparatus that can be used to perform ablation procedures.

"Typically, microwave apparatus for use in ablation procedures include a microwave generator that functions as an energy source and a microwave surgical instrument (e.g., microwave ablation probe) having an antenna assembly for directing the energy to the target tissue. The surgical instrument and microwave generator are typically operatively coupled by a cable assembly having a plurality of conductors for transmitting energy from the remote generator to the surgical instrument, and for communicating control, feedback and identification signals between the instrument and the remote generator. There are several types of microwave probes in use, e.g., monopole, dipole and helical, which may be used in tissue ablation applications.

"A variety of types of handheld instruments utilizing electromagnetic radiation have been employed for various types of electrosurgery in a variety of types of applications. Cable assemblies are typically employed to mechanically connect the handheld instruments to remote energy sources and to serve as a propagation medium and waveguide for the radiofrequency (RF) or microwave signal. Parameters used to evaluate the electrical performance of microwave cable assemblies include attenuation of the cable (also known as insertion loss, i.e., loss of power due to inserting the cable between the source and the load), voltage standing-wave ratio (VSWR) characteristics, and the shielding of the cable's outer conductor. Stray leakage of microwave energy from the cable assembly may cause interference to deployed wireless networks, patient monitoring, and other medical equipment used in a hospital environment. Cable assemblies add cost to produce and maintain the microwave surgical instruments. Cable assemblies may also interfere with the surgeon's full freedom of movement during use of a handheld instrument to perform procedures utilizing electromagnetic radiation to treat tissue."

In addition to obtaining background information on this patent, VerticalNews editors also obtained the inventors' summary information for this patent: "According to an aspect, a medical device is provided. The medical device includes a handle assembly. A probe extends distally from a distal end of the handle assembly. A microwave amplifier unit is disposed within the handle assembly. The microwave amplifier unit is adapted to amplify a high-frequency input signal to generate a high-frequency output signal to be transmitted to the probe.

"The medical device may include a microwave-signal-amplifying module. The microwave amplifier unit may include one or more outputs electrically-coupled to one or more outputs of the microwave-signal-amplifying module. The microwave amplifier unit may be disposed within the microwave-signal-amplifying module. In addition or alternatively, the medical device may include a controller electrically-coupled to the microwave-signal-amplifying module and/or electrically-coupled to the microwave amplifier unit. The controller may be adapted to control one or more operating parameters (e.g., temperature, impedance, power, current, voltage, mode of operation, and/or duration of application of electromagnetic energy) associated with the microwave-signal-amplifying module.

"According to another aspect, a medical device is provided that includes a handle assembly including a handle body defining a chamber therein. The medical device includes a microwave-signal-amplifier/controller module disposed within the chamber. The microwave-signal-amplifier/controller module includes a microwave amplifier unit and a controller. The microwave amplifier unit is adapted to amplify a high-frequency input signal to generate a high-frequency output signal. The controller is adapted to control one or more operating parameters (e.g., temperature, impedance, power, current, voltage, mode of operation, and/or duration of application of electromagnetic energy) associated with the microwave-signal-amplifier/controller module. The medical device includes a probe extending distally from the distal end of the handle assembly. The probe is operably coupled to an output of the microwave-signal-amplifier/controller module.

"The microwave amplifier unit may include one or more outputs electrically-coupled to one or more outputs of the microwave-signal-amplifier/controller module. The controller may be adapted to control one or more operating parameters (e.g., temperature, impedance, power, current, voltage, mode of operation, and/or duration of application of electromagnetic energy) associated with the microwave amplifier unit.

"In any of the aspects, the medical device may include one or more electrical conductors associated with the handle assembly (and/or handle body) for providing one or more electrically-conductive pathways. In any of the aspects, the handle assembly (and/or handle body) may be adapted to allow the microwave-signal-amplifying module or the microwave-signal-amplifier/controller module to be removable from the handle assembly. The microwave-signal-amplifying module or the microwave-signal-amplifier/controller module may include one or more connector portions provided with one or more electrical connectors or terminals suitable for making electrical connections with electrical conductors associated with the handle assembly (and/or handle body). The one or more connector portions may be configured to be removeably coupleable to electrical conductors associated with the handle assembly (and/or handle body).

"In any of the aspects, the microwave-signal-amplifying module or the microwave-signal-amplifier/controller module may additionally include a signal generator adapted to generate high-frequency signals (e.g., microwave signals) to be transmitted to an input of the microwave amplifier unit. One or more outputs of the signal generator may be electrically-coupled to one or more inputs of the microwave amplifier unit.

"According to another aspect, a medical device is provided. The medical device includes a probe and a handle assembly. The handle assembly includes a handle body defining a first chamber therein and configured to support the probe at a distal end thereof. A microwave-signal-amplifying module including a microwave amplifier unit is disposed within the first chamber. The probe is operably coupled to an output of the microwave-signal-amplifying module. The handle assembly further includes a grip member defining a second chamber therein. The grip member is coupled to the handle body. A power-supply/controller module is disposed within the second chamber. The power-supply/controller module includes a controller adapted to control one or more operating parameters associated with the microwave-signal-amplifying module. The grip member is adapted to allow the power-supply/controller module to be removable from the handle assembly.

"In any of the aspects, the medical device may be adapted to allow a user to select a signal source for high-frequency signals to be received at an input of the microwave amplifier unit. The medical device may additionally, or alternatively, include a switch adapted to enable the user to selectively switch between the signal generator and an external source of high-frequency signals.

"According to yet another aspect, a medical device is provided. The medical device includes a handle assembly and a probe-and-amplifier assembly. The handle assembly includes a handle body defining a chamber therein. The probe-and-amplifier assembly includes a probe extending distally from a distal end of the handle assembly. The probe-and-amplifier assembly further includes a microwave amplifier unit disposed within the chamber. The microwave amplifier unit is coupled to a proximal end of the probe and adapted to amplify a high-frequency input signal to generate a high-frequency output signal to be transmitted to the probe. The handle body is adapted to releaseably engage the probe-and-amplifier assembly to allow removal of the probe-and-amplifier assembly from the handle assembly.

"The probe may be releaseably mechanically coupled to the microwave amplifier unit to allow the probe to be separated from the amplifier, e.g., to facilitate cleaning and/or serialization of the probe and/or to permit replacement of the microwave amplifier unit.

"In any of the aspects, the medical device may include a user interface, e.g., configured to provide user-input capabilities and/or capabilities for simplified use and/or programming of the medical device. The user interface may be adapted to enable a user to selectively configure one or more operating parameters of the medical device, or component thereof, e.g., depending upon a particular purpose and/or to achieve a desired surgical outcome. The user interface may include a screen, such as a flat-panel display, e.g., an LCD (liquid crystal display), plasma display panel (PDP), organic light emitting diode (OLED), or electro-luminescent display (ELD). The screen may be located at the handle assembly. The screen may be communicatively-coupled to the controller. The medical device may additionally, or alternatively, include one or more user-input devices, e.g., pointing device (joystick, trackball, etc.) and/or touchscreen. The user-input device(s) may be ergonomically located at the handle assembly. The user-input device(s) may be communicatively-coupled to the controller. The user interface may additionally, or alternatively, include an indicator unit adapted to provide perceptible sensory alerts. The indicator unit may be communicatively-coupled to the controller.

"According to yet another aspect, a system is provided. The system includes a microwave signal generator and a medical device. The medical device includes a handle assembly including a handle body defining a chamber therein. The medical device further includes a probe-and-amplifier assembly. The probe-and-amplifier assembly includes a probe extending distally from a distal end of the handle assembly and a microwave amplifier unit disposed within the chamber. The microwave amplifier unit and the probe are mechanically coupled to one another to form a unitary body.

"According to yet another aspect, a system is provided. The system includes a microwave signal generator and a medical device. The medical device includes a handle assembly. The medical device further includes a microwave-signal-amplifying module disposed within the handle assembly and a probe extending distally from a distal end of the handle assembly. The probe is operably coupled to the microwave-signal-amplifying module. The microwave-signal-amplifying module is adapted to amplify a high-frequency input signal to generate a high-frequency output signal.

"In any of the aspects, the medical device may include a self-contained power source. The self-contained power source may be disposed within a grip-member chamber defined in a grip member of the handle assembly of the medical device. The self-contained power source may be disposed within a handle-body chamber defined in a handle body of the handle assembly of the medical device. The grip member and/or the handle body of the handle assembly of the medical device may be adapted to allow the self-contained power source to be removable from the handle assembly.

"According to yet another aspect, a method of directing energy to tissue is provided. The method includes the initial step of providing a handheld device including an energy applicator and a handle assembly configured to support the energy applicator at a distal end thereof. The method also includes the step of transmitting energy from an output of a microwave amplifier unit disposed within the handle assembly through the energy applicator to tissue.

"According to still another aspect, a method of directing energy to tissue is provided. The method includes the initial step of providing a handheld device including a microwave-signal-amplifying module at a handle assembly of the device and a probe including an antenna assembly operably coupled to the microwave-signal-amplifying module. The microwave-signal-amplifying module includes a microwave amplifier unit adapted to amplify a high-frequency input signal to generate a high-frequency output signal. The method also includes the step of transmitting energy from an output of the microwave amplifier unit through the antenna assembly to tissue.

"According to still another aspect, a method of manufacturing a medical device is provided. The method includes the initial steps of providing a handle assembly and providing a microwave-signal-amplifying module (or microwave-signal-amplifier/controller module). The handle assembly includes a handle body defining a chamber therein. The handle body is configured to support an energy applicator at a distal end thereof. The microwave-signal-amplifying module includes a microwave amplifier unit adapted to amplify a high-frequency input signal to generate a high-frequency output signal. The microwave-signal-amplifying module includes one or more connector portions including one or more electrical connectors adapted to be removeably coupleable to one or more electrical conductors associated with the handle body. The method also includes the step of positioning the microwave-signal-amplifying module into the chamber, or portion thereof, to bring the one or more electrical connectors of the one or more connector portions into electrical engagement with one or more electrical connectors associated with the handle body.

"According to still another aspect, a method of manufacturing a medical device is provided. The method includes the initial step of providing a handle assembly including a handle body defining a chamber therein, an energy applicator extending distally from a distal end of the handle body, and one or more electrical conductors associated with the handle body for providing one or more electrically-conductive pathways. One of the one or more electrical conductors provides an electrically-conductive pathway from the chamber, or portion thereof, to the energy applicator. The method also includes the step of providing a microwave-signal-amplifying module (or microwave-signal-amplifier/controller module) including a microwave amplifier unit adapted to amplify a high-frequency input signal to generate a high-frequency output signal. The microwave-signal-amplifying module may additionally include a signal generator adapted to generate the high-frequency input signal to be transmitted to an input of the microwave amplifier unit. The method also includes the step of positioning the microwave-signal-amplifying module into the chamber, or portion thereof, to bring one or more electrical conductors of one or more connector portions of the microwave-signal-amplifying module into electrical engagement with the one or more electrical conductors associated with the handle body.

"In any of the aspects, the microwave amplifier unit may include a solid-state amplifier having one or more high-frequency switching elements. The one or more high-frequency switching elements may include one or more Gallium Nitride Metal-Oxide Semiconductor Field-Effect Transistors (GaN MOSFETs)."

For more information, see this patent: Behnke, II, Robert J.; Jensen, Jeffrey L.; Frushour, Scott E. M.; Moul, Wayne L.. Method of Manufacturing Handheld Medical Devices Including Microwave Amplifier Unit. U.S. Patent Number 8745846, filed September 20, 2011, and published online on June 10, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8745846.PN.&OS=PN/8745846RS=PN/8745846

Keywords for this news article include: .

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Journal of Engineering


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters