News Column

Patent Issued for 3D Display System

June 25, 2014



By a News Reporter-Staff News Editor at Electronics Newsweekly -- According to news reporting originating from Alexandria, Virginia, by VerticalNews journalists, a patent by the inventor Atkins, Robin A. (Vancouver, CA), filed on August 23, 2010, was published online on June 10, 2014.

The assignee for this patent, patent number 8746894, is Dolby Laboratories Licensing Corporation (San Francisco, CA).

Reporters obtained the following quote from the background information supplied by the inventors: "Motion parallax is typically a term for a perceived 3D effect which comes from having a different perspective of a scene dependent on viewing position. For example, when moving the head from side to side, the scene should be perceived differently due to the different relationships between objects. Also incorporated in this concept are other 3D cues such as lighting, shadows, binocular vision and perspective. The human visual system uses a combination of 3D cues to fully construct and perceive a 3D image.

"Motion parallax provides a different image to the viewer depending on the perspective of the viewer. This is more complex than stereo vision because it is up to the viewer to determine his or her perspective, by moving around. In particular, when an observer moves, the apparent relative motion of several stationery objects against a background gives hints about a relative distance. If information about the direction and velocity of movement is known, motion parallax can provide absolute depth information. See, for example, Ferris, S. H. (1972): Motion Parallax and Absolute Distance, Journal of Experimental Psychology, 95(2), 258-263. Some methods to implement motion parallax have tracked the position of the viewer to determine the correct view for the viewer's perspective. However, these methods do not work well or at all for multiple viewers, and can exhibit latency even for a single viewer due to delays in motion tracking.

"A second technique is to simultaneously show different images which appear only at the appropriate perspective--termed multi-view. Phillips.RTM. and other manufacturers have manufactured LCD displays to achieve this effect, using lenticular arrays over an LCD to direct light from certain pixels into the desired orientation. This is achieved by sacrificing image resolution--i.e., for 10 views in the horizontal direction, 10 vertical pixels for each image pixel are needed, thus degrading the horizontal resolution of the image by a factor of 10."

In addition to obtaining background information on this patent, VerticalNews editors also obtained the inventor's summary information for this patent: "Methods and systems for displaying three-dimensional (3D) images using motion parallax are described. Images are projected onto a reflector with a rippled or faceted surface. The reflected images are viewed at a plurality of viewing locations and a different image is perceived according to the viewing location.

"According to an embodiment of the present disclosure, a system for three-dimensional (3D) display of images using motion parallax is provided, comprising: at least one specular reflector having a rippled or faceted surface; at least one projector adapted to project images onto the rippled or faceted surface of the at least one specular reflector; and a plurality of viewing locations, each viewing location adapted to perceive images projected from the at least one projector and reflected by the rippled or faceted surface of the at least one specular reflector,

"wherein: the images perceived by the viewing locations differ in accordance with an angle formed by the rippled or faceted surface when reflecting an image to a viewing location, each viewing location corresponds to a viewpoint of the image, and the number of the viewpoints of the image and the angular density of the viewpoints of the image are configured to provide a smooth transition between adjacent viewpoints of the image.

"According to another embodiment of the present disclosure, a method for displaying three-dimensional (3D) images using motion parallax is provided, comprising: projecting images onto a rippled or faceted surface of at least one specular reflector, wherein adjacent pixels of the reflected images are reflected at different angles to different viewing locations depending on the angle of the rippled or faceted surface at a corresponding viewing location, each viewing location corresponding to a viewpoint of the image, and wherein angular separation between viewpoint is configured to provide a unique viewpoint to each eye of a viewer, thus allowing viewers at the different viewing locations to perceive a different image depending on the viewing location and to perceive different images with a continuous transition when moving from one viewing location to another and further allowing a binocular 3D effect.

"According to a further embodiment of the present disclosure, a method to capture and display video information as three-dimensional (3D) images at multiple viewing locations is provided, comprising: providing an array of cameras to capture images of a scene from multiple perspectives, each camera corresponding to a viewing location; and capturing the images from at least one specular reflector having a rippled or faceted surface, wherein adjacent pixels of the reflected images are reflected at different angles to the viewing locations depending on the angle of the rippled or faceted surface at a corresponding viewing location, wherein orientation of the array of cameras with respect to the scene corresponds to orientation of the viewing location with respect to the at least one specular reflector.

"According to yet another embodiment of the present disclosure, a method to capture and display video information as three-dimensional (3D) images at multiple viewing locations using motion parallax is provided, comprising: providing one or more cameras; providing at least one concave specular reflector having a rippled or faceted surface; capturing images of a scene reflected on the at least one specular reflector with the one or more cameras, the one or more cameras being pointed towards the at least one or more specular reflector; and projecting the captured images onto a same or similar specular reflector, wherein adjacent pixels of the reflected images are reflected at different angles to the viewing locations depending on the angle of the rippled or faceted surface at a corresponding viewing location.

"Further embodiment of the present disclosure are provided in the specification, figures and claims of the present application."

For more information, see this patent: Atkins, Robin A.. 3D Display System. U.S. Patent Number 8746894, filed August 23, 2010, and published online on June 10, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8746894.PN.&OS=PN/8746894RS=PN/8746894

Keywords for this news article include: Electronics, Dolby Laboratories Licensing Corporation.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering arts and entertainment, please see HispanicBusiness' Arts & Entertainment Channel



Source: Electronics Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters