News Column

Evolution of a bimetallic nanocatalyst

June 29, 2014

By a News Reporter-Staff News Editor at VerticalNews Science -- "Using in situ aberration-corrected transmission electron microscopy (TEM), we found that during the oxidation reaction, cobalt atoms migrate to the nanoparticle surface, forming a cobalt oxide epitaxial film, like water on oil," says Haimei Zheng, a staff scientist in Berkeley Lab's Materials Sciences Division who led this study. "During the hydrogen reduction reaction, cobalt atoms migrate back into the bulk, leaving a monolayer of platinum on the surface. This atomic information provides an important reference point for designing and engineering better bimetallic catalysts in the future."

Zheng, a 2011 recipient of a DOE Office of Science Early Career Award, is the corresponding author of a paper describing this research in the journal NANO Letters entitled "Revealing the Atomic Restructuring of Pt-Co Nanoparticles." Co-authors at Berkeley are Huolin Xin, Selim Alayoglu, Runzhe Tao, Lin-Wang Wang, Miquel Salmeron and Gabor Somorjai. Other co-authors are Chong-Min Wang and Libor Kovarik, of the Pacific Northwest National Laboratory (PNNL), Eric Stach of Brookhaven National Laboratory (BNL), and Arda Genc of the FEI Company in Oregon.

Bimetallic catalysts are drawing considerable attention from the chemical industry these days because in many cases they offer superior performances to their monometallic counterparts. There is also the possibility of tuning their catalytic performances to meet specific needs. A bimetallic catalyst of particular interest entails the pairing of platinum, the gold standard of monometallic catalysts, with cobalt, a lesser catalyst but one that is dramatically cheaper than platinum. The platinum/cobalt catalyst is not only considered a model system for the study of other bimetallic nanocatalysts, it is also an excellent promoter of the Fischer-Tropsch process, in which mixtures of hydrogen and carbon monoxide are converted into long-chain carbons for use as fuels or in low-temperature fuel cells.

Keywords for this news article include: DOE/Lawrence Berkeley National Laboratory.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC

For more stories covering the world of technology, please see HispanicBusiness' Tech Channel

Source: NewsRX Science

Story Tools Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters