News Column

Patent Issued for Medical Imaging Device

June 27, 2014

By a News Reporter-Staff News Editor at Health & Medicine Week -- According to news reporting originating from Alexandria, Virginia, by NewsRx journalists, a patent by the inventor Maciejewski, Bernd (Markt Erlbach, DE), filed on August 17, 2011, was published online on June 10, 2014 (see also Siemens Aktiengesellschaft).

The assignee for this patent, patent number 8750962, is Siemens Aktiengesellschaft (Munchen, DE).

Reporters obtained the following quote from the background information supplied by the inventors: "Medical imaging devices, for example magnetic resonance devices or computed tomography devices, comprise a receiving region, in particular a circular cylinder-shaped and/or tubular receiving region to receive a patient. In conventional medical imaging devices this receiving region has a maximum diameter of approx. 60 cm to 70 cm. The patient lies on a patient couch inside this receiving region for a medical examination and/or for medical imaging. The distance between the face and/or eye region of the patient and a wall of the medical imaging device enclosing the receiving region is therefore maximum 25 cm to 30 cm, which can cause many patients to experience feelings of claustrophobia and/or unease. When the medical imaging device is used to perform a measurement it is however particularly important for the patient to be as relaxed and still as possible on the patient couch inside the receiving region to prevent any negative impact on and/or falsification of a measurement result, for example due to patient movement.

"A medical imaging device having a receiving region to receive a patient is known from WO 2006/051497 A1. This medical imaging device comprises a flat mirror, which is disposed inside the receiving region parallel to a couch surface of a patient couch. However this mirror must also be configured to be magnetic-resonance-compatible for deployment in a magnetic resonance device, which makes the production of the mirror expensive. Also the mirror takes up a lot of space inside the receiving region and can therefore cause the patient to be impeded and/or at least restricted inside the receiving region.

"A medical imaging device is also known, wherein a simple colored adhesive strip is disposed inside the receiving region. However because of its proximity to the patient this adhesive strip can cause the patient to feel ill at ease by placing an excessive strain on the eye muscles of the patient."

In addition to obtaining background information on this patent, NewsRx editors also obtained the inventor's summary information for this patent: "The object of the present invention is in particular to provide a medical imaging device, wherein the patient feels at ease during a medical imaging examination with little outlay. The object is achieved by the features of the independent claim. Advantageous embodiments of the invention are described in the dependent claims.

"The invention is based on a medical imaging device having an in particular tubular receiving region to receive a patient on a patient couch and a wall at least partially enclosing the receiving region.

"It is proposed that the medical imaging device should have a film disposed on the wall at least partially enclosing the receiving region, said film generating at least one virtual image. The medical imaging device is advantageously formed by a magnetic resonance device or a computed tomography device. In this context a virtual image refers in particular to a visual mapping of a light-reflecting object and/or an illuminated object, which in contrast to a real image cannot be displayed on a screen. The light-reflecting and/or illuminated object here is disposed between a focal point of at least one lens and the at least one lens. The inventive embodiment allows a depth effect of the receiving region to be suggested to the patient inside the receiving region, in that a greater, virtual distance between the patient on the patient couch and the wall with the film disposed on it than the actual distance between the patient and the wall can be suggested to and/or simulated for said patient. For patients with a tendency to claustrophobic anxiety states in particular this can induce a feeling of well being and/or at least partially suppress any claustrophobic anxiety states as a result of a suggested and/or simulated depth effect of the film. A depth and/or thickness of film suggested to the patient is at least twenty times the structurally required depth and/or thickness of film and particularly advantageously at least thirty times the structurally required depth and/or thickness of film, so that the film produces a three-dimensional impression and/or effect for the patient. The film has a thickness of approx. 0.5 mm to 0.6 mm, the depth effect being up to 20 mm or the virtual image being disposed at a virtual distance of up to 20 mm in particular from the viewpoint of the patient or a viewer behind the surface of the film. This depth effect can be achieved particularly economically inside the receiving region by using a film. The film also allows a patient to concentrate and/or focus his/her eyes and/or attention on the film during a measurement, which can help the patient relax significantly during an imaging measurement, thereby preventing unnecessary and in particular undesirable movement of the patient.

"It is also proposed that the film should comprise at least two layers, thereby allowing the depth effect or virtual image to be generated in a structurally simple and space-saving manner by means of the film. It is particularly advantageous here for the film to have at least one layer, which comprises a plurality of optical lens elements, thereby allowing a sharp, undistorted image to be generated when the film is viewed from any direction. The layer with the plurality of optical lens elements is preferably formed by a top layer, which is disposed on a side of the film facing the patient. The optical lens elements are preferably formed by convex lens elements, the diameter of the individual convex lens elements being a multiple smaller than the thickness of the film.

"If the film has at least one layer, which is printed at least partially on the front, it is also possible to generate a virtual background image for the patient to look at. In this context a layer printed on the front means in particular that a surface of the layer facing the receiving region is printed with a motif, in particular a colored motif. The motifs printed on the surface of the layer are preferably disposed from the patient's viewpoint behind the layer with the optical lens elements and are mapped by these to generate the virtual image. The film preferably comprises a number of layers printed on the front. In an interaction with a top layer made up of a plurality of optical lens elements, virtual images of the different layers, in particular of the layers printed on the front, can be shown in different depth planes, thereby generating a three-dimensional effect for someone looking at the film or the virtual images. The layer with the optical lens elements can also have a printed surface, which however only supplies a two-dimensional image for the patient, which is in particular superimposed on the virtual background image. It is also conceivable for a number of films with different motifs to be available to be positioned inside the receiving region, so that the medical imaging device, in particular the film, can be tailored to an area of application of the medical imaging device.

"In an advantageous development of the invention it is proposed that the film should be connected at least partially with a material fit to the wall at least partially enclosing the receiving region. It is particularly advantageous for the film to be bonded to the wall, allowing particularly fast and structurally simple fastening and/or attachment of the film to the wall of the medical imaging device to be achieved. The film therefore particularly advantageously assumes a contour of the wall at least partially enclosing the receiving region, so that any restriction of the receiving region can also be prevented. Further material fit connections that appear useful to the person skilled in the art are alternatively or additionally possible between the film and wall.

"To prevent and/or suppress vigorous eye movement of the patient during an examination using the medical imaging device, the film has a width of maximum 10 cm and particularly advantageously a width of essentially 5 cm."

For more information, see this patent: Maciejewski, Bernd. Medical Imaging Device. U.S. Patent Number 8750962, filed August 17, 2011, and published online on June 10, 2014. Patent URL:

Keywords for this news article include: Imaging Technology, Magnetic Resonance, Siemens Aktiengesellschaft.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC

For more stories covering the world of technology, please see HispanicBusiness' Tech Channel

Source: Health & Medicine Week

Story Tools Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters