News Column

New Alloys Study Findings Recently Were Reported by Researchers at Peking University

June 23, 2014



By a News Reporter-Staff News Editor at Cardiovascular Week -- Investigators publish new report on Alloys. According to news originating from Beijing, People's Republic of China, by NewsRx correspondents, research stated, "Mg-Li-based alloys were investigated for future cardiovascular stent application as they possess excellent ductility. However, Mg-Li binary alloys exhibited reduced mechanical strengths due to the presence of lithium."

Our news journalists obtained a quote from the research from Peking University, "To improve the mechanical strengths of Mg-Li binary alloys, aluminum and rare earth (RE) elements were added to form Mg-Li-Al ternary and Mg-Li-Al-RE quarternary alloys. In the present study, six Mg-Li-(Al)-(RE) alloys were fabricated. Their microstructures, mechanical properties and biocorrosion behavior were evaluated by using optical microscopy, X-ray diffraction, scanning electronic microscopy, tensile tests, immersion tests and electrochemical measurements. Microstructure characterization indicated that grain sizes were moderately refined by the addition of rare earth elements. Tensile testing showed that enhanced mechanical strengths were obtained, while electrochemical and immersion tests showed reduced corrosion resistance caused by intermetallic compounds distributed throughout the magnesium matrix in the rare-earth-containing Mg-Li alloys. Cytotoxicity assays, hemolysis tests as well as platelet adhesion tests were performed to evaluate in vitro biocompatibilities of the Mg-Li-based alloys. The results of cytotoxicity assays clearly showed that the Mg-3.5Li-2Al-2RE, Mg-3.5Li-4Al-2RE and Mg-8.5Li-2Al-2RE alloys suppressed vascular smooth muscle cell proliferation after 5day incubation, while the Mg-3.5Li, Mg-8.5Li and Mg-8.5Li-1Al alloys were proven to be tolerated. In the case of human umbilical vein endothelial cells, the Mg-Li-based alloys showed no significantly reduced cell viabilities except for the Mg-8.5Li-2Al-2RE alloy, with no obvious differences in cell viability between different culture periods. With the exception of Mg-8.5Li-2Al-2RE, all of the other Mg-Li-(Al)-(RE) alloys exhibited acceptable hemolysis ratios, and no sign of thrombogenicity was found."

According to the news editors, the research concluded: "These in vitro experimental results indicate the potential of Mg-Li-(Al)-(RE) alloys as biomaterials for future cardiovascular stent application and the worthiness of investigating their biodegradation behaviors in vivo."

For more information on this research see: Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application. Acta Biomaterialia, 2013;9(10):8488-98. (Elsevier - www.elsevier.com; Acta Biomaterialia - www.elsevier.com/wps/product/cws_home/702994)

The news correspondents report that additional information may be obtained from W.R. Zhou, Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China. Additional authors for this research include Y.F. Zheng, M.A. Leeflang and J. Zhou (see also Alloys).

Keywords for this news article include: Asia, Alloys, Beijing, Chemistry, Cardiology, Cardiovascular, Electrochemical, People's Republic of China.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Cardiovascular Week


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters