News Column

Researchers at Polytechnic University Target Nanoparticles

June 18, 2014

By a News Reporter-Staff News Editor at Biotech Week -- Investigators discuss new findings in Nanoparticles. According to news reporting from Bucharest, Romania, by NewsRx journalists, research stated, "This paper reports the synthesis and characterization of amoxicillin-functionalized magnetite nanostructures (Fe3O4@AMO), revealing and discussing several biomedical applications of these nanomaterials. Our results proved that 10 nm Fe3O4@AMO nanoparticles does not alter the normal cell cycle progression of cultured diploid cells, and an in vivo murine model confirms that the nanostructures disperse through the host body and tend to localize in particular sites and organs."

The news correspondents obtained a quote from the research from Polytechnic University, "The nanoparticles were found clustered especially in the lungs, kidneys and spleen, next to the blood vessels at this level, while being totally absent in the brain and liver, suggesting that they are circulated through the blood flow and have low toxicity. Fe3O4@AMO has the ability to be easily circulated through the body and optimizations may be done so these nanostructures cluster to a specific target region. Functionalized magnetite nanostructures proved a great antimicrobial effect, being active against both the Gram positive pathogen S. aureus and the Gram negative pathogen E. coli. The fabricated nanostructures significantly reduced the minimum inhibitory concentration (MIC) of the active drug. This result has a great practical relevance, since the functionalized nanostructures may be used for decreasing the therapeutic doses which usually manifest great severe side effects, when administrated in high doses."

According to the news reporters, the research concluded: "Fe3O4@AMO represents also a suitable approach for the development of new alternative strategies for improving the activity of therapeutic agents by targeted delivery and controlled release."

For more information on this research see: Biocompatible Fe3O4 increases the efficacy of amoxicillin delivery against Gram-positive and Gram-negative bacteria. Molecules, 2014;19(4):5013-27. (Springer -; Molecules -

Our news journalists report that additional information may be obtained by contacting A.M. Grumezescu, Dept. of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu Street no 1-7, 011061 Bucharest, Romania. Additional authors for this research include M.C. Gestal, A.M. Holban, V. Grumezescu, B.S. Vasile, L. Mogoant?, F. Iordache, C. Bleotu and G.D Mogo?anu (see also Nanoparticles).

Keywords for this news article include: Europe, Romania, Bucharest, Nanotechnology, Emerging Technologies.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC

For more stories covering the world of technology, please see HispanicBusiness' Tech Channel

Source: Biotech Week

Story Tools Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters