News Column

Patent Issued for Hybrid Inertial and Touch Sensing Input Device

June 19, 2014



By a News Reporter-Staff News Editor at Computer Weekly News -- According to news reporting originating from Alexandria, Virginia, by VerticalNews journalists, a patent by the inventor Moussavi, Farshid (Oakland, CA), filed on October 29, 2012, was published online on June 3, 2014.

The assignee for this patent, patent number 8743071, is Apple Inc. (Cupertino, CA).

Reporters obtained the following quote from the background information supplied by the inventors: "Conventional input devices, such as computer mice, typically employ optical sensors, track wheels or track balls to control the motion of a cursor or other navigational object on a computer display screen. Other types of input devices that measure a force imparted onto the input device typically incorporate one or more accelerometers for sensing acceleration forces exerted on the input device as it is moved by a user. A velocity of the electronic input device may be calculated and estimated by integrating the measured acceleration over time, and a position estimate of the input device may be calculated by integrating its velocity over time. In this way, motion of an accelerometer-based input device may be translated to motion of a cursor or other navigational object on a computer display screen.

"Touch-sensitive panels can also be used as an input device to control the motion of a cursor or other navigational object on a computer display screen. One common type of touch-sensitive panel is a touch pad. In general, touch-sensitive panels can detect one or more touch contacts on the surface of the touch-sensitive panel and generate signals indicative of the touch contacts. A computer can then control a cursor or other navigational object based on the detected touch contacts.

"Various problems are associated with conventional input devices. For example, most, if not all, conventional input devices are inadequate in tracking both large and fine motions. For example, inertial sensing-based input devices typically track large ranges of motion well (e.g., moving a cursor across the length of a display screen), but not fine ranges of motions. In contrast, touch-sensitive pads typically track fine ranges of motions well, but not large ranges of motion. For example, moving a cursor from one end of the display screen to the other end may require a user to swipe his or her finger across a touch pad multiple times before the cursor moves to the other end of the display screen."

In addition to obtaining background information on this patent, VerticalNews editors also obtained the inventor's summary information for this patent: "Embodiments of the present invention are directed to input devices using both inertial sensors and touch sensors. An exemplary input device has a motion sensing element capable of estimating a position of the input device based on a force applied to the input device. The motion sensing element can be used to track large ranges of motion. The input device can also include a touch sensitive surface operable to detect touches on the touch sensitive surface. The touch sensitive surface can be used to track relatively smaller ranges of motion.

"In accordance with some embodiments, a method for using inertial inputs and touch inputs of an electronic input device can include receiving a motion input from a motion sensor, and calculating a first estimated motion based on the motion input. The method can further include receiving a touch input from a touch sensor, and calculating a second estimated motion based on the touch input. The method can further include outputting the first estimated motion if the first estimated motion exceeds a first threshold, and outputting the second estimated motion if the second estimated motion exceeds a second threshold.

"In accordance with various embodiments, an electronic input device can have a motion sensing element operable to measure a motion of the electronic input device to obtain a motion input, and a touch sensing element operable to measure a touch motion on the electronic input device to obtain a touch input. The electronic input device can also include a processing element operable to calculate a first estimated motion based on the motion input and calculate a second estimated motion based on the touch input. The processing element can also operate to provide the first estimated motion as an output if the first estimated motion is greater than a first threshold, and provide the second estimated motion as an output, if the second estimated motion is greater than a second threshold. The electronic input device can also have an external interface operable to send the output to a receiving device.

"In accordance with various embodiments, a computer-readable medium can have instructions for receiving a motion input from a motion sensor, and calculating a first estimated motion based on the motion input. The instructions can further include receiving a touch input from a touch sensor, and calculating a second estimated motion based on the touch input. The instructions can provide for outputting the first estimated motion estimate if the first estimated motion is greater than a first threshold, and outputting the second estimated motion, if the second estimated motion is greater than a second threshold.

"In accordance with some embodiments, method for using inertial inputs and touch inputs of an electronic input device includes receiving a motion input from a motion sensor, and calculating a first estimated motion based on the motion input. The method receives a touch input from a touch sensor, and calculates a second estimated motion based on the touch input. The method obtains a first weight and a second weight, and calculates a motion output signal based on the first and the second weights, and the first and the second motion inputs. In this manner, the motion output signal can be calculated by the relationship V=Wa*Va+Wt*Vt, where V is the motion output signal, Wa and Wt are the respective weighting factors of the velocity Va and Vt, Va (first estimated motion) is the velocity output signal derived from the accelerometer output signal, and Vt (second estimated motion) is the velocity output signal derived from the touch sensor output signal device.

"Various embodiments relate to an electronic input device having a motion sensing element operable to measure a motion of the electronic input device, and a touch sensing element operable to detect a touch motion on the electronic input device. The electronic input device can also include a processing element operable to calculate a first estimated motion based on a motion input, calculate a second estimated motion based on a touch input, and calculate an output based on a first weight and a second weight, and the first and the second motion inputs. In this manner, the output can be calculated by the relationship V=Wa*Va+Wt*Vt, where V is the motion output signal, Wa and Wt are the respective weighting factors of the velocity Va and Vt, Va (first estimated motion) is the velocity output signal derived from the accelerometer output signal, and Vt (second estimated motion) is the velocity output signal derived from the touch sensor output signal device. The electronic input device can also have an external interface operable to send the output to an external device.

"Further embodiments relate to computer-readable medium embodying instructions for receiving a motion input from a motion sensor, and calculating a first estimated motion based on the motion input. The instructions can also include receiving a touch input from a touch sensor, and calculating a second estimated motion based on the touch input. In additional, the instructions can include obtaining a first weight and a second weight, and calculating a motion output signal based on the first and the second weights, and the first and the second motion inputs. In this manner, the motion output can be calculated by the relationship V=Wa*Va+Wt*Vt, where V is the motion output signal, Wa and Wt are the respective weighting factors of the velocity Va and Vt, Va (first estimated motion) is the velocity output signal derived from the accelerometer output signal, and Vt (second estimated motion) is the velocity output signal derived from the touch sensor output signal device."

For more information, see this patent: Moussavi, Farshid. Hybrid Inertial and Touch Sensing Input Device. U.S. Patent Number 8743071, filed October 29, 2012, and published online on June 3, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8743071.PN.&OS=PN/8743071RS=PN/8743071

Keywords for this news article include: Apple Inc.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Computer Weekly News


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters