News Column

New Findings from Free University Update Understanding of Biomembranes

June 17, 2014



By a News Reporter-Staff News Editor at Life Science Weekly -- New research on Biomembranes is the subject of a report. According to news reporting from Berlin, Germany, by NewsRx journalists, research stated, "Radio-frequency (RF) electromagnetic fields are readily absorbed in biological matter and lead to dielectric heating. To understand how RF radiation interacts with macromolecular structures and possibly influences biological function, a quantitative description of dielectric absorption and heating at nanometer resolution beyond the usual effective medium approach is crucial."

The news correspondents obtained a quote from the research from Free University, "We report an exemplary multiscale theoretical study for biomembranes that combines (i) atornistic simulations for the spatially resolved absorption spectrum at a single planar DPPC lipid bilayer immersed in water, (ii) calculation of the electric field distribution in planar and spherical cell models, and (iii) prediction of the nanometer resolved temperature profiles under steady RF radiation. Our atornistic simulations show that the only 2 nm thick lipid hydration layer strongly absorbs in a wide RF range between 10 MHz and 100 GHz. The absorption strength, however, strongly depends on the direction of the incident wave. This requires modeling of the electric field distribution using tensorial dielectric spectral functions. For a spherical cell model, we find a strongly enhanced RF absorption on an equatorial ring, which gives rise to temperature gradients inside a single cell under radiation. Although absolute temperature elevation is small under conditions of typical telecommunication usage, our study points to hitherto neglected temperature gradient effects and allows thermal RF effects to be predicted on an atomistically resolved level."

According to the news reporters, the research concluded: "In addition to a refined physiological risk assessment of RF fields, technological applications for controlling temperature profiles in nanodevices are possible."

For more information on this research see: Nanometer-Resolved Radio-Frequency Absorption and Heating in Biomembrane Hydration Layers. Journal of Physical Chemistry B, 2014;118(18):4963-4969. Journal of Physical Chemistry B can be contacted at: Amer Chemical Soc, 1155 16TH St, NW, Washington, DC 20036, USA. (American Chemical Society - www.acs.org; Journal of Physical Chemistry B - www.pubs.acs.org/journal/jpcbfk)

Our news journalists report that additional information may be obtained by contacting S. Gekle, Free University of Berlin, Fachbereich Phys, Berlin, Germany (see also Biomembranes).

Keywords for this news article include: Berlin, Europe, Germany, Biomembranes, Bioengineering

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Life Science Weekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters