News Column

Patent Application Titled "Visualization Device for Use with a Tray for Loading a Medical Device" Published Online

May 15, 2014



By a News Reporter-Staff News Editor at Politics & Government Week -- According to news reporting originating from Washington, D.C., by VerticalNews journalists, a patent application by the inventors Kruetzfeldt, Dawn (Santa Rosa, CA); Stante, Glenn (Santa Rosa, CA); Upadhyaya, Sameer (Santa Rosa, CA), filed on October 23, 2012, was made available online on May 1, 2014.

The assignee for this patent application is Medtronic Cv Luxembourg S.a.r.l.

Reporters obtained the following quote from the background information supplied by the inventors: "Heart valves, such as the mitral, tricuspid, aortic, and pulmonary valves, are sometimes damaged by disease or by aging, resulting in problems with the proper functioning of the valve. Heart valve problems generally take one of two forms: stenosis in which a valve does not open completely or the opening is too small, resulting in restricted blood flow; or insufficiency in which blood leaks backward across a valve when it should be closed.

"Heart valve replacement has become a routine surgical procedure for patients suffering from valve regurgitation or stenotic calcification of the leaflets. Conventionally, the vast majority of valve replacements entail full stenotomy in placing the patient on cardiopulmonary bypass. Traditional open surgery inflicts significant patient trauma and discomfort, requires extensive recuperation times, and may result in life-threatening complications.

"To address these concerns, within the last decade, efforts have been made to perform cardiac valve replacements using minimally-invasive techniques. In these methods, laparoscopic instruments are employed to make small openings through the patient's ribs to provide access to the heart. While considerable effort has been devoted to such techniques, widespread acceptance has been limited by the clinician's ability to access only certain regions of the heart using laparoscopic instruments.

"Still other efforts have been focused upon percutaneous transcatheter (or transluminal) delivery of replacement cardiac valves to solve the problems presented by traditional open surgery and minimally-invasive surgical methods. In such methods, a valve prosthesis is compacted for delivery in a catheter and then advanced, for example through an opening in the femoral artery and through the descending aorta to the heart, where the prosthesis is then deployed in the valve annulus (e.g., the aortic valve annulus).

"Valve prostheses are generally formed by attaching a bioprosthetic valve to a frame made of a wire or a network of wires. Such a valve prosthesis can be contracted radially to introduce the valve prosthesis into the body of the patient percutaneously through a catheter. The valve prosthesis can be deployed by radially expanding it once positioned at the desired target site. The valve prosthesis is mounted onto a distal tip of the catheter assembly prior to delivery to the target location where the valve prosthesis is expanded into place.

"To prepare such a valve prosthesis for implantation, the valve prosthesis can be initially provided in an expanded or uncrimped condition, then crimped or compressed around the distal tip of the catheter assembly until the valve prosthesis is as close to the diameter of the distal tip as possible. Various methods and devices are available for crimping the valve prosthesis onto the catheter's distal tip, which may include hand-held devices or tabletop devices, for example. These crimping devices can initially provide an opening that is large enough to accommodate a valve prosthesis in its expanded condition and be positioned over a desired section of a distal tip of the catheter assembly. The valve prosthesis can then be compressed by reconfiguring the opening of the crimping device to uniformly decrease the size of the opening until the valve is compressed to the desired size. Due to the bioprosthetic valve, the valve prosthesis often is not shipped loaded into the delivery catheter. Instead, many trancatheter valve prostheses must be loaded into the catheter assembly by hand at the treatment facility (e.g., operating room) immediately prior to performance of the procedure.

"Many transcatheter valve prostheses and corresponding catheter assemblies have connection or attachment points that the user/loader must ensure are connected during the loading procedure. If the connection points are not properly connected, there is a risk of premature detachment of the valve prosthesis from the catheter assembly. The user/loader may also need to observe that certain portions of the valve prosthesis are properly loaded into the catheter assembly. The connection points and other portions of the valve prosthesis which need to be observed during loading may be located at several locations around the circumference of the catheter assembly. For example, two connection points where the proximal (outflow) end of the valve prosthesis is connected to the catheter assembly may be disposed on opposite sides of the valve prosthesis. Further, the valve prosthesis is normally loaded in a liquid solution such as, but not limited to, a saline solution. Thus, a loading tray filled with such a liquid solution is often used for loading a valve prosthesis on a catheter assembly. The catheter assembly in some cases may be held in place by the loading tray or other devices while loading the valve prosthesis. Thus, in order to ensure that the connections and/or other observations on opposite sides of the catheter assembly are properly connected/observed, the catheter assembly and valve prosthesis must either be lifted out of the liquid solution and twisted, or the loader must try to make the connections without seeing all of the connections. Removing the valve prosthesis and catheter assembly out of the liquid solution during loading may introduce unwanted air bubbles into the assembly. Further, twisting the catheter assembly may damage the catheter assembly or the valve prosthesis.

"According, there is a need for a device that allows the loader to observe all sides of the catheter assembly and prosthetic valve during loading of the prosthetic valve onto the catheter assembly."

In addition to obtaining background information on this patent application, VerticalNews editors also obtained the inventors' summary information for this patent application: "Embodiments hereof relate to a visualization device for use with a loading tray. The visualization device includes a frame comprising a floor, a first side wall extending generally perpendicular from the floor, and a second side wall extending generally perpendicular from the floor and spaced from the first side wall. The visualization device further includes a mirror abutting the floor of the frame. A magnifying glass may also be supported by top edges of the first and second side walls, or by support runners coupled to the top edges of the first and second side walls.

"Embodiments hereof also relate to a tray for loading a medical device on a catheter assembly. The loading tray includes a reservoir defined by a bottom surface, a first wall, a second wall, a third wall, a fourth wall, and a generally open top opposite the bottom surface. A mirror abuts the bottom surface of the reservoir and faces the open top. A magnifying glass may be supported by the top edges of the first and third walls of the reservoir.

"Embodiments hereof also relate to a tray for loading a medical device on a catheter assembly. The loading tray includes a reservoir defined by a bottom surface, a first wall, a second wall, a third wall, a fourth wall, and a generally open top opposite the bottom surface. A frame is slideably disposed in the reservoir. The frame includes a floor abutting the bottom surface of the reservoir. The frame also includes a first side wall attached to the floor and extending generally perpendicular from the floor. The first side wall of the frame abuts the first wall of the reservoir. The frame also includes a second side wall attached to and extending generally perpendicular from the floor. The second side wall of the frame abuts the third wall of the reservoir. A mirror is coupled to the floor of the frame and faces the open top of the reservoir. A magnifying glass may also be supported by top edges of the first and second side walls of the frame, or by support runners coupled to the top edges of the first and second side walls of the frame.

BRIEF DESCRIPTION OF DRAWINGS

"FIG. 1 is schematic diagram of a catheter assembly for delivering a transcatheter prosthetic heart valve to an implantation site, with the transcatheter heart valve prosthesis loaded in the catheter assembly.

"FIG. 2 is an exploded perspective view of a catheter assembly and a loading tray with visualization device disposed in the loading tray.

"FIG. 3 is a perspective view of an embodiment of a visualization device.

"FIG. 4 is an exploded perspective view of a catheter assembly and a loading tray with another embodiment of a visualization device disposed in the loading tray.

"FIG. 5 is a top view of the loading tray of FIG. 4.

"FIG. 6 is a perspective view of a portion of a catheter assembly with a heart valve prosthesis being loaded therein as seen through a visualization device as described herein."

For more information, see this patent application: Kruetzfeldt, Dawn; Stante, Glenn; Upadhyaya, Sameer. Visualization Device for Use with a Tray for Loading a Medical Device. Filed October 23, 2012 and posted May 1, 2014. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=5464&p=110&f=G&l=50&d=PG01&S1=20140424.PD.&OS=PD/20140424&RS=PD/20140424

Keywords for this news article include: Surgery, Endoscopy, Laparoscopy, Cardio Device, Medical Devices, Medtronic Cv Luxembourg S.a.r.l..

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Politics & Government Week


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters